Опр.1. Пусть дана последовательность функций: , причем функции являются функциями одной переменной и определены в некоторой области . Такая последовательность называется функциональной и обозначается: .
Пусть для каждого эта последовательность имеет конечный предел. Величина этого предела зависит от значения . Поэтому функциональная последовательность своим пределом будет также иметь функцию, зависящую от , т.е. .
Опр.2. Функция называется предельной функцией последовательности .
Теперь нас будут интересовать не только существование предела при каждом отдельном значении , но и функциональные свойства предельной функции .
Опр.3. Рассмотрим ряд, элементами которого являются функции одной и той же переменной , заданной в области :
.
Такой ряд называется функциональным рядом.
Сходимость этого ряда определяется следующим образом: при каждом фиксированном значении функция принимает числовое значение. Поэтому при каждом из X функциональный ряд превращается в числовой ряд.
Пусть дан функциональный ряд и он сходится при каждом фиксированном из, тогда сумма такого ряда представляет собой некоторую функцию от переменной x: . Сумма для функционального ряда определяется также как и для числового: . Здесь - частичная сумма функционального ряда n-го порядка
.
Опр.4. Множество всех значений x, при которых заданный функциональный ряд сходится, называется областью сходимости функционального ряда.
Пример №1. Найти область сходимости ряда
.
Решение. Применим признак Д`Аламбера абсолютной сходимости функционального ряда. Имеем:
Следовательно, при данный ряд сходится абсолютно, а при расходится.
Рассмотрим теперь поведение исследуемого функционального ряда при и .
При этих значениях получаются соответствующие числовые ряды:
которые, сходятся по интегральному признаку сходимости числового положительного ряда и признаку сходимости знакочередующегося ряда соответственно.
Окончательно получаем, что на отрезке [-1,1] заданный функциональный ряд абсолютно сходится.
Образование, педагогика, воспитание:
Принцип научности и доступности правового образования
Принцип научности предполагает соответствие учебного материала новейшим достижениям юридической науки; приоритет научных знаний: не идеология определяет отбор знаний, а научные знания позволяют делать идеологические выводы. Понимание данной позиции важно в силу того, что право имеет политическую пр ...
Кабинеты гуманитарных дисциплин
В кабинетах гуманитарных дисциплин в современной школе необходим хотя бы один мультимедийный компьютер, а также проектор, экран, оверхед-проектор, слайд-проектор, видеоплеер, телевизор и музыкальный центр. А также комплекты видеофильмов, аудиокассет и программного обеспечения, портреты великих писа ...
Специфика и средства полового воспитания мальчиков и девочек дошкольного
возраста
Проблема полового воспитания включает в себя вопросы формирования психического пола ребенка, психических половых различий и полоролевой дифференциации. Без ее решения невозможно разработать методы дифференцированного подхода к воспитанию детей разного пола, для формирования у них основ таких качест ...