Пример №2. Исследовать на сходимость функциональный ряд
.
Решение
При сумма ряда равна нулю; при ряд, являясь суммой бесконечно убывающей геометрической прогрессии, имеет сумму . При сумма ряда равна единице. При и ряд представляет собой сумму бесконечно возрастающей геометрической прогрессии, следовательно, расходится.
Таким образом, данный ряд сходится на отрезке и имеет сумму
Выясним теперь, будет ли данный ряд равномерно сходящимся на отрезке .
Остаток ряда имеет вид
Очевидно, что . Ряд в правой части равенства представляет собой сумму бесконечно убывающей геометрической прогрессии, поэтому .
Для того чтобы выполнялось неравенство , нужно положить , откуда или .
Пусть - ближайшее из натуральных чисел, следующих за числом . Тогда для любого положительного числа существует такое натуральное число , зависящее от , что при . Для каждого заданного можно найти соответствующее , определяемое отношением . Однако если , меняясь, приближается к нулю, то также будет приближаться к нулю, а число - неограниченно возрастать. Это обстоятельство показывает, что, хотя данный ряд и сходится на отрезке [0,1], все же для любого положительного числа нельзя найти такой не зависящий от значения номер , что при . Это говорит о том, что ряд не всюду на отрезке [0,1] сходится равномерно. Данный ряд, однако, будет равномерно сходящимся на , где - положительное постоянное число, меньшее 1. В качестве номера (не зависящего от ) можно взять ближайшее из натуральных чисел, следующих за числом [2].
Образование, педагогика, воспитание:
Структура педагогической деятельности
Прежде, чем приступить к рассмотрению сущности педагогических инноваций, методов их выявления и изучения, необходимо проанализировать структуру педагогической деятельности и определить, какое место занимает в ней инновационная деятельность учителя. Современные исследования Н.В. Кузьмина, В.А. Сласт ...
Реализация технологии физического воспитания в работе с детьми 5–6 лет с
задержкой психического развития
В РФ действуют специальные образовательные учреждения I-VШ видов. Для обучения и воспитания детей с ЗПР организуются учреждения VII вида: детский сад компенсирующего вида с приоритетным осуществлением квалифицированной коррекции в физическом и психическом развитии воспитанников; детский сад комбини ...
Содержание и приобщение детей старшего дошкольного
возраста к народной культуре Урала, истории родного города
Дошкольное детство – важнейший и самоценный период в становлении и развитии личности дошкольника, период его обогащения событиями и впечатлениями окружающей жизни. Соприкосновение с социальным миром происходит на фоне приобщения к культуре и истории родного края. Цель дошкольных учреждений является ...