Пример №2. Исследовать на сходимость функциональный ряд
.
Решение
При
сумма ряда равна нулю; при
ряд, являясь суммой бесконечно убывающей геометрической прогрессии, имеет сумму
. При
сумма ряда равна единице. При
и
ряд представляет собой сумму бесконечно возрастающей геометрической прогрессии, следовательно, расходится.
Таким образом, данный ряд сходится на отрезке
и имеет сумму
Выясним теперь, будет ли данный ряд равномерно сходящимся на отрезке
.
Остаток ряда имеет вид
Очевидно, что
. Ряд в правой части равенства
представляет собой сумму бесконечно убывающей геометрической прогрессии, поэтому
.
Для того чтобы выполнялось неравенство
, нужно положить
, откуда
или
.
Пусть
- ближайшее из натуральных чисел, следующих за числом
. Тогда для любого положительного числа
существует такое натуральное число
, зависящее от
, что
при
. Для каждого заданного
можно найти соответствующее
, определяемое отношением
. Однако если
, меняясь, приближается к нулю, то
также будет приближаться к нулю, а число
- неограниченно возрастать. Это обстоятельство показывает, что, хотя данный ряд и сходится на отрезке [0,1], все же для любого положительного числа
нельзя найти такой не зависящий от значения
номер
, что
при
. Это говорит о том, что ряд не всюду на отрезке [0,1] сходится равномерно. Данный ряд, однако, будет равномерно сходящимся на
, где
- положительное постоянное число, меньшее 1. В качестве номера
(не зависящего от
) можно взять ближайшее из натуральных чисел, следующих за числом
[2].
Образование, педагогика, воспитание:
Наблюдение за игровой деятельностью детей
Цель: выявление особенностей взаимодействия мальчиков и девочек в игре, предпочтения в выборе партнёра по игре, особенностей полоролевого поведения детей. Объектом наблюдения являлись действия детей в игре, выявлялись женские и мужские признаки и качества личности. В процессе наблюдения нами отмеча ...
Методика проведения занятий по обучению детей рассказыванию по картинкам
В методике развития речи обучения рассказыванию по картинам (описание и повествование) разработано в достаточной степени детально. Здесь методика опирается на классическое наследие западной и русской педагогики, использованное позднее применительно к работе с детьми дошкольного возраста Е.И. Плехее ...
Сущность педагоических инноваций
Педагогические инновации (другими словами нововведения) определяются в педагогической науке с нескольких точек зрения. Во-первых, под педагогической инновацией понимается целенаправленное изменение, вносящее в образовательную среду стабильные элементы (определённые новшества), которые улучшают хара ...