Пример №2. Исследовать на сходимость функциональный ряд
.
Решение
При
сумма ряда равна нулю; при
ряд, являясь суммой бесконечно убывающей геометрической прогрессии, имеет сумму
. При
сумма ряда равна единице. При
и
ряд представляет собой сумму бесконечно возрастающей геометрической прогрессии, следовательно, расходится.
Таким образом, данный ряд сходится на отрезке
и имеет сумму
Выясним теперь, будет ли данный ряд равномерно сходящимся на отрезке
.
Остаток ряда имеет вид
Очевидно, что
. Ряд в правой части равенства
представляет собой сумму бесконечно убывающей геометрической прогрессии, поэтому
.
Для того чтобы выполнялось неравенство
, нужно положить
, откуда
или
.
Пусть
- ближайшее из натуральных чисел, следующих за числом
. Тогда для любого положительного числа
существует такое натуральное число
, зависящее от
, что
при
. Для каждого заданного
можно найти соответствующее
, определяемое отношением
. Однако если
, меняясь, приближается к нулю, то
также будет приближаться к нулю, а число
- неограниченно возрастать. Это обстоятельство показывает, что, хотя данный ряд и сходится на отрезке [0,1], все же для любого положительного числа
нельзя найти такой не зависящий от значения
номер
, что
при
. Это говорит о том, что ряд не всюду на отрезке [0,1] сходится равномерно. Данный ряд, однако, будет равномерно сходящимся на
, где
- положительное постоянное число, меньшее 1. В качестве номера
(не зависящего от
) можно взять ближайшее из натуральных чисел, следующих за числом
[2].
Образование, педагогика, воспитание:
Практические аспекты использования элементов хоккея как средства физического
воспитания у детей старшего дошкольного возраста
Экспериментальная работа по реализации практических аспектов использования элементов хоккея в работе с детьми старшего дошкольного возраста в МДОУ №10 "Малютка" города Тамбова с 11.09.11. по 17.05.12. с детьми подготовительной к школе группы. В эксперименте участвовало18 детей, а именно: ...
Цели профессионального образования
Цели профессионального образования выполняют системообразующую функцию в педагогической деятельности. Именно от выбора целей в наибольшей степени зависит выбор содержания, методов и средств обучения и воспитания. Виды педагогических целей многообразны. Можно выделить нормативные государственные цел ...
Возрастное
психофизическое развитие ребенка и его особенности
В процессе жизни человек все время развивается, то есть изменяется в количественном и качественном отношении. При этом можно особо говорить о развитии организма человека: физическом, умственном, психическом, личностном; а также о развитии многих других его качеств и особенностей. Развитие человека ...