Пример №2. Исследовать на сходимость функциональный ряд
.
Решение
При
сумма ряда равна нулю; при
ряд, являясь суммой бесконечно убывающей геометрической прогрессии, имеет сумму
. При
сумма ряда равна единице. При
и
ряд представляет собой сумму бесконечно возрастающей геометрической прогрессии, следовательно, расходится.
Таким образом, данный ряд сходится на отрезке
и имеет сумму
Выясним теперь, будет ли данный ряд равномерно сходящимся на отрезке
.
Остаток ряда имеет вид
Очевидно, что
. Ряд в правой части равенства
представляет собой сумму бесконечно убывающей геометрической прогрессии, поэтому
.
Для того чтобы выполнялось неравенство
, нужно положить
, откуда
или
.
Пусть
- ближайшее из натуральных чисел, следующих за числом
. Тогда для любого положительного числа
существует такое натуральное число
, зависящее от
, что
при
. Для каждого заданного
можно найти соответствующее
, определяемое отношением
. Однако если
, меняясь, приближается к нулю, то
также будет приближаться к нулю, а число
- неограниченно возрастать. Это обстоятельство показывает, что, хотя данный ряд и сходится на отрезке [0,1], все же для любого положительного числа
нельзя найти такой не зависящий от значения
номер
, что
при
. Это говорит о том, что ряд не всюду на отрезке [0,1] сходится равномерно. Данный ряд, однако, будет равномерно сходящимся на
, где
- положительное постоянное число, меньшее 1. В качестве номера
(не зависящего от
) можно взять ближайшее из натуральных чисел, следующих за числом
[2].
Образование, педагогика, воспитание:
Методическая типология грамматического материала
Вопросы ознакомления обучающихся с новым языковым материалом тесно связаны с проблемой типологии материала и его методической организацией. Важность методической типологии языкового материала объясняется стремлением рационализировать педагогический процесс, повысить его эффективность. Группировка я ...
Понятие о технологии конструирования
педагогического процесса
Одним из решающих условий успешного протекания педагогического процесса является его конструирование, включающее в себя анализ, диагностику, определение прогноза и разработку проекта деятельности. На этом этапе решения педагогической задачи можно выделить тесно связанные между собой виды деятельнос ...
Мультимедиа - средство обучения нового поколения
Современное образование требует изменения подходов к обучению. Прежде всего, следует добиться максимальной активизации и визуализации обучения. Этому способствует применение различных технических средств, позволяющих сократить время изложения нужной информации и современные технологии в образовании ...