Золотая педагогика

Определения равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Определения равномерно сходящихся функциональных последовательностей и рядов

Страница 2

Пример №2. Исследовать на сходимость функциональный ряд

.

Решение

При сумма ряда равна нулю; при ряд, являясь суммой бесконечно убывающей геометрической прогрессии, имеет сумму . При сумма ряда равна единице. При и ряд представляет собой сумму бесконечно возрастающей геометрической прогрессии, следовательно, расходится.

Таким образом, данный ряд сходится на отрезке и имеет сумму

Выясним теперь, будет ли данный ряд равномерно сходящимся на отрезке .

Остаток ряда имеет вид

Очевидно, что . Ряд в правой части равенства представляет собой сумму бесконечно убывающей геометрической прогрессии, поэтому .

Для того чтобы выполнялось неравенство , нужно положить , откуда или .

Пусть - ближайшее из натуральных чисел, следующих за числом . Тогда для любого положительного числа существует такое натуральное число , зависящее от , что при . Для каждого заданного можно найти соответствующее , определяемое отношением . Однако если , меняясь, приближается к нулю, то также будет приближаться к нулю, а число - неограниченно возрастать. Это обстоятельство показывает, что, хотя данный ряд и сходится на отрезке [0,1], все же для любого положительного числа нельзя найти такой не зависящий от значения номер , что при . Это говорит о том, что ряд не всюду на отрезке [0,1] сходится равномерно. Данный ряд, однако, будет равномерно сходящимся на , где - положительное постоянное число, меньшее 1. В качестве номера (не зависящего от ) можно взять ближайшее из натуральных чисел, следующих за числом [2].

Страницы: 1 2 

Образование, педагогика, воспитание:

Вариант работы с аутентичным текстом
Цель данного этапа заключается в создании ситуации и мотива общения, в формулировке коммуникативной задачи, а также в преодолении трудностей восприятия и понимания сообщения путем использования различных опор и прочих факторов, облегчающих восприятие. «Today we are going to discuss one of the most ...

Анализ профессионального образа педагога на примере средней общеобразовательной школы
Учитывая, что не каждый педагог целенаправленно задумывается о формировании собственного профессионального имиджа, следует при исследовании акцентировать внимание педагогов на определенные высказывания, касающихся восприятия учащимися некоторых характеристик личности педагога. Суждения, представлен ...

Характеристика современной системы эвристической технологии в образовательном процессе
Внутренняя потребность в творческой деятельности рассматривается психологами и педагогами как объективная закономерность развития личности. По утверждению Г.К. Селевко, творчество - норма детского развития, склонность к творчеству вообще присуща любому ребенку. Однако, принимая участие в творческой ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru