Золотая педагогика

Определения равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Определения равномерно сходящихся функциональных последовательностей и рядов

Страница 2

Пример №2. Исследовать на сходимость функциональный ряд

.

Решение

При сумма ряда равна нулю; при ряд, являясь суммой бесконечно убывающей геометрической прогрессии, имеет сумму . При сумма ряда равна единице. При и ряд представляет собой сумму бесконечно возрастающей геометрической прогрессии, следовательно, расходится.

Таким образом, данный ряд сходится на отрезке и имеет сумму

Выясним теперь, будет ли данный ряд равномерно сходящимся на отрезке .

Остаток ряда имеет вид

Очевидно, что . Ряд в правой части равенства представляет собой сумму бесконечно убывающей геометрической прогрессии, поэтому .

Для того чтобы выполнялось неравенство , нужно положить , откуда или .

Пусть - ближайшее из натуральных чисел, следующих за числом . Тогда для любого положительного числа существует такое натуральное число , зависящее от , что при . Для каждого заданного можно найти соответствующее , определяемое отношением . Однако если , меняясь, приближается к нулю, то также будет приближаться к нулю, а число - неограниченно возрастать. Это обстоятельство показывает, что, хотя данный ряд и сходится на отрезке [0,1], все же для любого положительного числа нельзя найти такой не зависящий от значения номер , что при . Это говорит о том, что ряд не всюду на отрезке [0,1] сходится равномерно. Данный ряд, однако, будет равномерно сходящимся на , где - положительное постоянное число, меньшее 1. В качестве номера (не зависящего от ) можно взять ближайшее из натуральных чисел, следующих за числом [2].

Страницы: 1 2 

Образование, педагогика, воспитание:

Диагностическое исследования уровня коммуникативной полноценности речи учащихся 4-х классов
Речь у детей младшего школьного возраста обычно развивается параллельно с совершенствованием мышления, особенно словесно-логического, поэтому, когда проводится психодиагностика развития мышления, она частично затрагивает речь, и наоборот: когда изучается речь ребенка, то в получаемых показателях не ...

История введения инноватики в образование
Понятие «инноватика» появилось более 100 лет назад в культурологии и лингвистике при описании процессов культурной диффузии, когда феномен из одного культурного ареала проникал в другие. Первое наиболее полное описание инновационных процессов было представлено в начале XX в. экономистом И. Шумпетер ...

Проблема отбора содержания экспериментальных уроков
Основная трудность, с которой сталкиваются учителя в школах при изучении исторических персоналий, - это отсутствие систематизированного исторического материала и методических рекомендаций. При отборе исторического материала мы старались опираться на литературу, доступную для школьных учителей. Нами ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru