Золотая педагогика

Определения равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Определения равномерно сходящихся функциональных последовательностей и рядов

Страница 2

Пример №2. Исследовать на сходимость функциональный ряд

.

Решение

При сумма ряда равна нулю; при ряд, являясь суммой бесконечно убывающей геометрической прогрессии, имеет сумму . При сумма ряда равна единице. При и ряд представляет собой сумму бесконечно возрастающей геометрической прогрессии, следовательно, расходится.

Таким образом, данный ряд сходится на отрезке и имеет сумму

Выясним теперь, будет ли данный ряд равномерно сходящимся на отрезке .

Остаток ряда имеет вид

Очевидно, что . Ряд в правой части равенства представляет собой сумму бесконечно убывающей геометрической прогрессии, поэтому .

Для того чтобы выполнялось неравенство , нужно положить , откуда или .

Пусть - ближайшее из натуральных чисел, следующих за числом . Тогда для любого положительного числа существует такое натуральное число , зависящее от , что при . Для каждого заданного можно найти соответствующее , определяемое отношением . Однако если , меняясь, приближается к нулю, то также будет приближаться к нулю, а число - неограниченно возрастать. Это обстоятельство показывает, что, хотя данный ряд и сходится на отрезке [0,1], все же для любого положительного числа нельзя найти такой не зависящий от значения номер , что при . Это говорит о том, что ряд не всюду на отрезке [0,1] сходится равномерно. Данный ряд, однако, будет равномерно сходящимся на , где - положительное постоянное число, меньшее 1. В качестве номера (не зависящего от ) можно взять ближайшее из натуральных чисел, следующих за числом [2].

Страницы: 1 2 

Образование, педагогика, воспитание:

Практические аспекты использования элементов хоккея как средства физического воспитания у детей старшего дошкольного возраста
Экспериментальная работа по реализации практических аспектов использования элементов хоккея в работе с детьми старшего дошкольного возраста в МДОУ №10 "Малютка" города Тамбова с 11.09.11. по 17.05.12. с детьми подготовительной к школе группы. В эксперименте участвовало18 детей, а именно: ...

Цели профессионального образования
Цели профессионального образования выполняют системообразующую функцию в педагогической деятельности. Именно от выбора целей в наибольшей степени зависит выбор содержания, методов и средств обучения и воспитания. Виды педагогических целей многообразны. Можно выделить нормативные государственные цел ...

Возрастное психофизическое развитие ребенка и его особенности
В процессе жизни человек все время развивается, то есть изменяется в количественном и качественном отношении. При этом можно особо говорить о развитии организма человека: физическом, умственном, психическом, личностном; а также о развитии многих других его качеств и особенностей. Развитие человека ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru