Пример №2. Исследовать на сходимость функциональный ряд
.
Решение
При
сумма ряда равна нулю; при
ряд, являясь суммой бесконечно убывающей геометрической прогрессии, имеет сумму
. При
сумма ряда равна единице. При
и
ряд представляет собой сумму бесконечно возрастающей геометрической прогрессии, следовательно, расходится.
Таким образом, данный ряд сходится на отрезке
и имеет сумму
Выясним теперь, будет ли данный ряд равномерно сходящимся на отрезке
.
Остаток ряда имеет вид
Очевидно, что
. Ряд в правой части равенства
представляет собой сумму бесконечно убывающей геометрической прогрессии, поэтому
.
Для того чтобы выполнялось неравенство
, нужно положить
, откуда
или
.
Пусть
- ближайшее из натуральных чисел, следующих за числом
. Тогда для любого положительного числа
существует такое натуральное число
, зависящее от
, что
при
. Для каждого заданного
можно найти соответствующее
, определяемое отношением
. Однако если
, меняясь, приближается к нулю, то
также будет приближаться к нулю, а число
- неограниченно возрастать. Это обстоятельство показывает, что, хотя данный ряд и сходится на отрезке [0,1], все же для любого положительного числа
нельзя найти такой не зависящий от значения
номер
, что
при
. Это говорит о том, что ряд не всюду на отрезке [0,1] сходится равномерно. Данный ряд, однако, будет равномерно сходящимся на
, где
- положительное постоянное число, меньшее 1. В качестве номера
(не зависящего от
) можно взять ближайшее из натуральных чисел, следующих за числом
[2].
Образование, педагогика, воспитание:
Критерий Коши равномерной сходимости функциональной последовательности
Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для 0 , , N и выполнялось неравенство: . Доказательство необходимости Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область оп ...
Необходимость воспитания чувства юмора в дошкольном детстве
Дошкольное детство – это большой отрезок жизни ребенка. Условия жизни в это время стремительно расширяются: рамки семьи раздвигаются до пределов улицы, города, страны. Ребенок открывает для себя мир человеческих отношений, разных видов деятельности и общественных функций людей. Период дошкольного д ...
Сущность педагогической деятельности
Смысл педагогической профессии выявляется в деятельности, которую осуществляют ее представители и которая называется педагогической. Очевидно, что эту деятельность осуществляют не только педагоги, но и родители, общественные организации, руководители предприятий и учреждений, производственные и дру ...