Опр.5. Последовательность функций равномерно сходится на множестве Х к предельной функции , если
.
Опр.6. Функциональная последовательность называется равномерно сходящейся на множестве X, если существует функция , в которой она равномерно сходится на множестве X. Обозначение:
.
Геометрический смысл равномерной сходимости функциональной последовательности
Перепишем неравенство опр.5 в виде двойного неравенства:
.
Это означает, что график функций целиком располагается в полосе шириной , и функции и получены смещением функции вверх и вниз на величину .
Рис.1.
Понятие равномерной сходимости естественным образом переносится и на функциональные ряды.
§4. Определения равномерной сходимости функциональных рядов
Опр.7. Если последовательность частичных сумм функционального ряда равномерно сходится к функции на множестве X, то ряд равномерно сходится на множестве X [14].
Рассмотрим определение равномерной сходимости функционального
ряда на некотором отрезке .
Пусть функциональный ряд сходится на отрезке к функции и - какое-нибудь значение из области сходимости, причем .
Тогда числовой ряд
сходится и его сумма равна , т.е.
=
Представим это равенство в виде
=,
где - n-я частичная сумма; - остаток ряда.
Тогда,
,
.
Как и в случае функциональной последовательности, для функционального ряда номер также зависит как от , так и от значения из области сходимости: . Однако, для функционального ряда число может и не зависеть от , т.е. это число будет одно и тоже для каждого значения , принадлежащего области сходимости.
Опр.8. Функциональный ряд , сходящийся на отрезке , называется равномерно сходящимся, если для любого существует такой номер , не зависящий от , что при , каково бы ни было .
Образование, педагогика, воспитание:
Изучение народного искусства в начальной школе на уроках изобразительного
искусства; влияние русской народной игрушки на формирование личности ребенка
В настоящее время многие аспекты освоения народного и декоративно- прикладного искусства в школе изучены достаточно полного и глубоко. Аспекты освоения народного искусства у школьников происходит на уроках декоративного рисования Содержание художественного – эстетического образования, основанное на ...
Психолого-педагогическая характеристика детей младшего
школьного возраста с нарушением интеллекта
Границы младшего школьного возраста, совпадающие с периодом обучения в начальной школе, устанавливаются в настоящее время с 6-7 до 9-10 лет. В этот период происходит дальнейшее физическое и психофизиологическое развитие ребенка, обеспечивающее возможность систематического обучения в школе. Начало о ...
Воспитание самостоятельности и активности
Главной задачей интеллектуальной готовности ребенка является формирование у ребенка определенных знаний и умений на основе включения его в активную учебную деятельность. В процессе решения этой задачи педагог использует разнообразные методы и приемы: объяснение, показ, вопросы, оценка и др. Формиро ...