Золотая педагогика

Определения равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Определения равномерно сходящихся функциональных последовательностей и рядов

Страница 1

Опр.5. Последовательность функций равномерно сходится на множестве Х к предельной функции , если

.

Опр.6. Функциональная последовательность называется равномерно сходящейся на множестве X, если существует функция , в которой она равномерно сходится на множестве X. Обозначение:

.

Геометрический смысл равномерной сходимости функциональной последовательности

Перепишем неравенство опр.5 в виде двойного неравенства:

.

Это означает, что график функций целиком располагается в полосе шириной , и функции и получены смещением функции вверх и вниз на величину .

Рис.1.

Понятие равномерной сходимости естественным образом переносится и на функциональные ряды.

§4. Определения равномерной сходимости функциональных рядов

Опр.7. Если последовательность частичных сумм функционального ряда равномерно сходится к функции на множестве X, то ряд равномерно сходится на множестве X [14].

Рассмотрим определение равномерной сходимости функционального

ряда на некотором отрезке .

Пусть функциональный ряд сходится на отрезке к функции и - какое-нибудь значение из области сходимости, причем .

Тогда числовой ряд

сходится и его сумма равна , т.е.

=

Представим это равенство в виде

=,

где - n-я частичная сумма; - остаток ряда.

Тогда,

,

.

Как и в случае функциональной последовательности, для функционального ряда номер также зависит как от , так и от значения из области сходимости: . Однако, для функционального ряда число может и не зависеть от , т.е. это число будет одно и тоже для каждого значения , принадлежащего области сходимости.

Опр.8. Функциональный ряд , сходящийся на отрезке , называется равномерно сходящимся, если для любого существует такой номер , не зависящий от , что при , каково бы ни было .

Страницы: 1 2

Образование, педагогика, воспитание:

Цели обучения иностранному языку
Под «целью» принято понимать идеальный образ планируемого результата, закодированный в мозгу «образ потребного будущего», «пусковой механизм всякой деятельности». Цель – то, к чему стремятся, что намечено достигнуть, предел, намерение, которое должно осуществить. Цель – это планируемый результат. Ц ...

Методические рекомендации по проведению практических занятий
Концепция целенаправленного развития у студентов готовности к самообразованию приводит к тому, что самостоятельная деятельность студентов, управляемая и организуемая, тесно смыкается с образованием, которое является составной и закономерной частью целостной ситемы учебно-воспитательной работы. В ра ...

Результаты коррекционно-развивающей работы с умственно отсталыми младшими школьниками
Таблица 1 Состав экспериментальной группы Фамилия, имя Возраст Диагноз ПМПК 1. Будников Женя 10 л. Легкая умственная отсталость вследствие алкоголизма родителей 2. Вырвич Андрей 10 л. Легкая умственная отсталость с нарушенением поведения 3. Дубина Ольга 11 л. Слабоумие вследствие фенилкетонурии 4. ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru