Опр.5. Последовательность функций
равномерно сходится на множестве Х к предельной функции
, если
.
Опр.6. Функциональная последовательность
называется равномерно сходящейся на множестве X, если существует функция
, в которой она равномерно сходится на множестве X. Обозначение:
.
Геометрический смысл равномерной сходимости функциональной последовательности
Перепишем неравенство опр.5 в виде двойного неравенства:
.
Это означает, что график функций
целиком располагается в полосе шириной
, и функции
и
получены смещением функции
вверх и вниз на величину
.
![]() |
Рис.1.
Понятие равномерной сходимости естественным образом переносится и на функциональные ряды.
§4. Определения равномерной сходимости функциональных рядов
Опр.7. Если последовательность частичных сумм
функционального ряда
равномерно сходится к функции
на множестве X, то ряд равномерно сходится на множестве X [14].
Рассмотрим определение равномерной сходимости функционального
ряда на некотором отрезке
.
Пусть функциональный ряд
сходится на отрезке
к функции
и
- какое-нибудь значение из области сходимости, причем
.
Тогда числовой ряд
сходится и его сумма равна
, т.е.
=
Представим это равенство в виде
=
,
где ![]()
- n-я частичная сумма; ![]()
- остаток ряда.
Тогда,
,
.
Как и в случае функциональной последовательности, для функционального ряда номер
также зависит как от
, так и от значения
из области сходимости:
. Однако, для функционального ряда число
может и не зависеть от
, т.е. это число
будет одно и тоже для каждого значения
, принадлежащего области сходимости.
Опр.8. Функциональный ряд
, сходящийся на отрезке
, называется равномерно сходящимся, если для любого
существует такой номер
, не зависящий от
, что
при
, каково бы ни было
.
Образование, педагогика, воспитание:
Ознакомление с основами правового сознания детей дошкольного возраста
По рекомендации ЮНЕСКО (1974 г.) обучение правам человека, т. е. правовое воспитание, предлагается начинать еще на дошкольном уровне. Сегодня в отечественной дошкольной педагогике эта проблема только разрабатывается, вызывая интерес у исследователей и практиков. Для правового образования детей педа ...
Вхождение России в болонский процесс
Учебные цели 1. Понимать актуальность присоединения России к единому европейскому образовательному стандарту; 2. Знать основные проблемы вступления России в Болонский процесс; 3. Знать основные направления модернизации отечественной высшей школы в связи с Болонским процессом; Отводимое время – 2 ча ...
Практические аспекты использования элементов хоккея как средства физического
воспитания у детей старшего дошкольного возраста
Экспериментальная работа по реализации практических аспектов использования элементов хоккея в работе с детьми старшего дошкольного возраста в МДОУ №10 "Малютка" города Тамбова с 11.09.11. по 17.05.12. с детьми подготовительной к школе группы. В эксперименте участвовало18 детей, а именно: ...