Опр.5. Последовательность функций равномерно сходится на множестве Х к предельной функции
, если
.
Опр.6. Функциональная последовательность называется равномерно сходящейся на множестве X, если существует функция
, в которой она равномерно сходится на множестве X. Обозначение:
.
Геометрический смысл равномерной сходимости функциональной последовательности
Перепишем неравенство опр.5 в виде двойного неравенства:
.
Это означает, что график функций целиком располагается в полосе шириной
, и функции
и
получены смещением функции
вверх и вниз на величину
.
![]() |
Рис.1.
Понятие равномерной сходимости естественным образом переносится и на функциональные ряды.
§4. Определения равномерной сходимости функциональных рядов
Опр.7. Если последовательность частичных сумм функционального ряда
равномерно сходится к функции
на множестве X, то ряд равномерно сходится на множестве X [14].
Рассмотрим определение равномерной сходимости функционального
ряда на некотором отрезке .
Пусть функциональный ряд сходится на отрезке
к функции
и
- какое-нибудь значение из области сходимости, причем
.
Тогда числовой ряд
сходится и его сумма равна , т.е.
=
Представим это равенство в виде
=
,
где - n-я частичная сумма;
- остаток ряда.
Тогда,
,
.
Как и в случае функциональной последовательности, для функционального ряда номер также зависит как от
, так и от значения
из области сходимости:
. Однако, для функционального ряда число
может и не зависеть от
, т.е. это число
будет одно и тоже для каждого значения
, принадлежащего области сходимости.
Опр.8. Функциональный ряд , сходящийся на отрезке
, называется равномерно сходящимся, если для любого
существует такой номер
, не зависящий от
, что
при
, каково бы ни было
.
Образование, педагогика, воспитание:
Цели обучения иностранному языку
Под «целью» принято понимать идеальный образ планируемого результата, закодированный в мозгу «образ потребного будущего», «пусковой механизм всякой деятельности». Цель – то, к чему стремятся, что намечено достигнуть, предел, намерение, которое должно осуществить. Цель – это планируемый результат. Ц ...
Методические рекомендации по проведению
практических занятий
Концепция целенаправленного развития у студентов готовности к самообразованию приводит к тому, что самостоятельная деятельность студентов, управляемая и организуемая, тесно смыкается с образованием, которое является составной и закономерной частью целостной ситемы учебно-воспитательной работы. В ра ...
Результаты коррекционно-развивающей работы с
умственно отсталыми младшими школьниками
Таблица 1 Состав экспериментальной группы Фамилия, имя Возраст Диагноз ПМПК 1. Будников Женя 10 л. Легкая умственная отсталость вследствие алкоголизма родителей 2. Вырвич Андрей 10 л. Легкая умственная отсталость с нарушенением поведения 3. Дубина Ольга 11 л. Слабоумие вследствие фенилкетонурии 4. ...