Опр.5. Последовательность функций
равномерно сходится на множестве Х к предельной функции
, если
.
Опр.6. Функциональная последовательность
называется равномерно сходящейся на множестве X, если существует функция
, в которой она равномерно сходится на множестве X. Обозначение:
.
Геометрический смысл равномерной сходимости функциональной последовательности
Перепишем неравенство опр.5 в виде двойного неравенства:
.
Это означает, что график функций
целиком располагается в полосе шириной
, и функции
и
получены смещением функции
вверх и вниз на величину
.
![]() |
Рис.1.
Понятие равномерной сходимости естественным образом переносится и на функциональные ряды.
§4. Определения равномерной сходимости функциональных рядов
Опр.7. Если последовательность частичных сумм
функционального ряда
равномерно сходится к функции
на множестве X, то ряд равномерно сходится на множестве X [14].
Рассмотрим определение равномерной сходимости функционального
ряда на некотором отрезке
.
Пусть функциональный ряд
сходится на отрезке
к функции
и
- какое-нибудь значение из области сходимости, причем
.
Тогда числовой ряд
сходится и его сумма равна
, т.е.
=
Представим это равенство в виде
=
,
где ![]()
- n-я частичная сумма; ![]()
- остаток ряда.
Тогда,
,
.
Как и в случае функциональной последовательности, для функционального ряда номер
также зависит как от
, так и от значения
из области сходимости:
. Однако, для функционального ряда число
может и не зависеть от
, т.е. это число
будет одно и тоже для каждого значения
, принадлежащего области сходимости.
Опр.8. Функциональный ряд
, сходящийся на отрезке
, называется равномерно сходящимся, если для любого
существует такой номер
, не зависящий от
, что
при
, каково бы ни было
.
Образование, педагогика, воспитание:
Разработка письменного инструктирования
Письменное инструктирование является одним из методических приемов проведения основной части урока производственного обучения в мастерской. Этот прием позволяет наладить самостоятельную работу учащихся по выполнению учебного задания. Нам известно четыре основных вида документации письменного инстру ...
Методические рекомендации к проведению пальчиковых игр
1) Перед игрой с ребенком обсудить ее содержание, сразу при этом отрабатывая необходимые жесты, комбинация пальцев, движения. Это не только позволит подготовит малыша к правильному выполнению упражнения, но и создаст необходимый эмоциональный настрой. 2) Перед началом упражнений дети разогревают ла ...
Игровые технологии в младшем школьном возрасте
Игровые технологии применяются на уроках как в начальной школе, так и в среднем и старшем звене. Но в нашей работе мы рассмотрим подробно игровые технологии в младшем школьном возрасте. Для младшего школьного возраста характерны яркость и непосредственность восприятия, легкость вхождения в образы. ...