Золотая педагогика

Критерий Коши равномерной сходимости функционального ряда

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Критерий Коши равномерной сходимости функционального ряда

Страница 2

Докажем равномерность сходимости функционального ряда. Из неравенства и, используя свойства модуля суммы двух действительных чисел () можно переписать это неравенство так:

.

По свойству транзитивности: - условие равномерности сходимости функционального ряда на множестве Х.

Замечание. Положительный сходящийся числовой ряд, связанный с функциональным рядом, называется мажорантным или мажорирующим.

Пример №3: Доказать, что функциональный ряд абсолютно и равномерно сходится на всей числовой прямой.

Решение

1) Так как , N, R, то в качестве мажорантного ряда выберем при R.

2) Cравним общие элементы функционального и числового рядов: , при R. Следовательно, сходится абсолютно и равномерно на R, так как - положительный сходящийся ряд (ряд Дирихле с ) [4]. Замечание. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости функционального ряда.

Страницы: 1 2 

Образование, педагогика, воспитание:

Основные принципы преподавания происхождения сущности государства и права в современной школе
Принцип единства правового обучения и воспитания является принципом воспитывающего обучения, в соответствии с которым правовое обучение организуется преимущественно во имя решения задач воспитания. Общеизвестно, что наряду с функциями регулирования общественных отношений право выполняет воспитатель ...

Характеристика диагностической программы исследования общения со сверстниками у детей старшего дошкольного возраста
Анализ психолого-педагогической литературы по проблеме исследования позволил нам разработать диагностическую программу, направленную на выявление особенностей общения со сверстниками в старшем дошкольном возрасте. Разработанная нами диагностическая программа была использована на констатирующем и ко ...

Типы учебных упражнений
Анализируя содержание существующих программ обучения, учебников для начальной школы можно отметить, что содержание программ нацелено на: - формирование у школьников приемов мыслительной деятельности (анализа, синтеза, сравнения, абстрагирования, конкретизации, обобщения); - на формирование умений д ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru