Докажем равномерность сходимости функционального ряда. Из неравенства и, используя свойства модуля суммы двух действительных чисел () можно переписать это неравенство так:
.
По свойству транзитивности: - условие равномерности сходимости функционального ряда на множестве Х.
Замечание. Положительный сходящийся числовой ряд, связанный с функциональным рядом, называется мажорантным или мажорирующим.
Пример №3: Доказать, что функциональный ряд абсолютно и равномерно сходится на всей числовой прямой.
Решение
1) Так как , N, R, то в качестве мажорантного ряда выберем при R.
2) Cравним общие элементы функционального и числового рядов: , при R. Следовательно, сходится абсолютно и равномерно на R, так как - положительный сходящийся ряд (ряд Дирихле с ) [4]. Замечание. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости функционального ряда.
Образование, педагогика, воспитание:
Дидактические игры
Особый вариант педагогического общения представляют дидактические игры, в ходе которых цели обучения достигаются при помощи и посредством решения игровых задач. Управляя процессом игры, преподаватель одновременно и руководит учебно-познавательной деятельностью, и связывает ее с положительным мотива ...
Примеры игр со шнурками
Использование игры-шнуровки, для того чтобы в легкой, творческой, игровой форме дать малышу необходимый сензитивный опыт. Но на первый взгляд игрушка-шнуровка не выглядит достаточно яркой и привлекательной. Возникают сомнения, заинтересует ли она малыша? Как сделать так, чтобы ему понравилось новое ...
Краткая характеристика грамматического строя немецкого языка
в сопоставлении с русским
Пожалуй, ни один из аспектов обучения иностранному языку не был на протяжении многих лет предметом столь интенсивных обсуждений и дискуссий, как грамматика. Грамматика играла и продолжает играть неодинаковую роль не только при обучении родному или иностранному языкам, но и вообще в системе образова ...