Теорема 2. Для того чтобы функциональный ряд равномерно сходился на множестве X, необходимо и достаточно, чтобы
0,
N,
,
,
N и
выполнялось неравенство:
.
Доказательство
1) Составим разность частичных сумм функционального ряда :
.
2) Если будут выполняться неравенства: , то это означает, что последовательность частичных сумм функционального ряда
равномерно сходится на множестве Х. А по определению равномерной сходимости функционального ряда, исследуемый функциональный ряд будет сходиться на множестве Х.
Достаточный признак равномерной и абсолютной сходимости функционального ряда (признак Вейерштрасса)
Теорема 3. Пусть даны два ряда: функциональный , элементами которого являются функции
, определенные на множестве Х, и числовой положительный сходящийся ряд
. Тогда, если для всех
выполняется неравенство
, то функциональный ряд
равномерно и абсолютно сходится на множестве Х.
Доказательство:
Пусть выполняются все условия теоремы.
Так как по условию теоремы числовой ряд сходится, то в соответствии со свойством числового ряда, его остаток должен стремится к нулю, т.е.
или
.
Так как это положительный числовой ряд, то неравенство примет вид:
По условию теоремы выполняется неравенство:
. Поэтому, при
выполняется и такое неравенство:
.
Если , то неравенство примет вид:
(с учетом пункта 2). По свойству транзитивности
- это остаток положительного функционального ряда, стремящегося к нулю при
. Значит, функциональный ряд
будет сходиться по свойству рядов. Известно, что если ряд абсолютно сходится, то он просто сходится. Значит, функциональный ряд
сходится.
Образование, педагогика, воспитание:
Проблема отбора содержания экспериментальных уроков
Основная трудность, с которой сталкиваются учителя в школах при изучении исторических персоналий, - это отсутствие систематизированного исторического материала и методических рекомендаций. При отборе исторического материала мы старались опираться на литературу, доступную для школьных учителей. Нами ...
Организация учебного процесса в коммуникативном направлении отечественной
методики
В теоретических основах коммуникативного метода, разработанного Е.И. Пассовым, даются ссылки на теорию деятельности А.Н. Леонтьева, теорию речевого общения А.А. Леонтьева, теорию речевой деятельности И.А. Зимней, работы Л.С. Выготского, С.Л. Рубинштейна. Коммуникативный метод представляет условия и ...
Возрастное
психофизическое развитие ребенка и его особенности
В процессе жизни человек все время развивается, то есть изменяется в количественном и качественном отношении. При этом можно особо говорить о развитии организма человека: физическом, умственном, психическом, личностном; а также о развитии многих других его качеств и особенностей. Развитие человека ...