Золотая педагогика

Критерий Коши равномерной сходимости функционального ряда

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Критерий Коши равномерной сходимости функционального ряда

Страница 1

Теорема 2. Для того чтобы функциональный ряд равномерно сходился на множестве X, необходимо и достаточно, чтобы 0, N, , , N и выполнялось неравенство:

.

Доказательство

1) Составим разность частичных сумм функционального ряда :

.

2) Если будут выполняться неравенства: , то это означает, что последовательность частичных сумм функционального ряда равномерно сходится на множестве Х. А по определению равномерной сходимости функционального ряда, исследуемый функциональный ряд будет сходиться на множестве Х.

Достаточный признак равномерной и абсолютной сходимости функционального ряда (признак Вейерштрасса)

Теорема 3. Пусть даны два ряда: функциональный , элементами которого являются функции , определенные на множестве Х, и числовой положительный сходящийся ряд . Тогда, если для всех выполняется неравенство , то функциональный ряд равномерно и абсолютно сходится на множестве Х.

Доказательство:

Пусть выполняются все условия теоремы.

Так как по условию теоремы числовой ряд сходится, то в соответствии со свойством числового ряда, его остаток должен стремится к нулю, т.е. или .

Так как это положительный числовой ряд, то неравенство примет вид:

По условию теоремы выполняется неравенство: . Поэтому, при выполняется и такое неравенство: .

Если , то неравенство примет вид: (с учетом пункта 2). По свойству транзитивности - это остаток положительного функционального ряда, стремящегося к нулю при . Значит, функциональный ряд будет сходиться по свойству рядов. Известно, что если ряд абсолютно сходится, то он просто сходится. Значит, функциональный ряд сходится.

Страницы: 1 2

Образование, педагогика, воспитание:

Значение и роль дидактических игр на уроке математики
Исследования показали, что игра – эффективное средство умственного развития ребенка, формирования его речи, воображения, суждений, умозаключений (А. Люблинская, Р. Римбург, В. Черков, Р. Жуковская, др.). Рассмотрению игры как многообразной практической познавательной деятельности ребенка большое вн ...

Наблюдение за игровой деятельностью детей
Цель: выявление особенностей взаимодействия мальчиков и девочек в игре, предпочтения в выборе партнёра по игре, особенностей полоролевого поведения детей. Объектом наблюдения являлись действия детей в игре, выявлялись женские и мужские признаки и качества личности. В процессе наблюдения нами отмеча ...

Основные периоды психического развития ребенка
В истории детской психологии можно отметить немало попыток создать возрастную периодизацию психического развития ребенка. Оригинальное понимание этой проблемы было разработано в свое время Л.С. Выготским. Во-первых, он справедливо полагал, что периодизацию психического развития необходимо проводить ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru