Теорема 7. Пусть последовательность функций
, непрерывно дифференцируемых на
, и последовательность их производных
равномерно сходятся на
, тогда предел последовательности непрерывно дифференцируемых функций
, т.е.
, непрерывно дифференцируем на указанном отрезке и верно равенство:
или
.
Доказательство
Обозначим через
предельную функцию последовательностей функций
:
.
По условию теоремы
равномерно сходится к предельной функции на
.
На основании ранее доказанных теорем функция
непрерывна на
, следовательно, она будет интегрируема на
, т.е. существует
, он будет равен 
(на основании теоремы о почленном интегрировании функциональных последовательностей).
По свойству определенного интеграла:
, правую часть записанного выражения можно записать в виде следующего равенства: 
(на основании теоремы о предельной сумме сходящихся последовательностей) и видно, что функция
дифференцируема для
.
Известна теорема, что если функция дифференцируема в точке, то она непрерывна в этой точке. Значит, функция
непрерывна
.
В соответствии с теоремой, если функция непрерывна на
, то она на нем интегрируема, т.е. существует
. Следовательно, функция
непрерывна в каждой точке
.
Из пунктов 4),
5), и 6) следует, что функция
непрерывно дифференцируема на указанном отрезке.
Теорема доказана [14].
Следствие. Пусть функции
непрерывно дифференцируемы на
и функциональные ряды:
равномерно сходятся на
. Тогда сумма функционального ряда
непрерывно дифференцируема на указанном отрезке и верно равенство:
=
(т.е. допустимо почленное дифференцирование у такого функционального ряда).
Доказательство
Обозначим
предел частичных сумм
, т.е.
для функционального ряда
. По условию следствия должны равномерно сходиться последовательности функций
. На основании только что доказанной теоремы и функция
непрерывно дифференцируема, т.е.
. Последнее равенство можно переписать по-другому:
Образование, педагогика, воспитание:
Омонимы в русском языке
В лексической системе русского языка есть слова, которые звучат одинаково, но имеют совершенно разные значения. Такие слова называют лексическими омонимами, а звуковое и грамматическое совпадение языковых единиц, которые семантически не связаны друг с другом называется омонимией. (Гр. – homos – оди ...
Определение роли социального педагога с детьми с ограниченными
возможностями в специальной образовательной школе – интернат VIII вида
Цель: проанализировать направления деятельности социального педагога в специальной (коррекционной) образовательной школе – интернат VIII вида; Для реализации цели, формулируем следующие задачи: 1. Выделить направления деятельности социального педагога; 2. Разработать критерий для оценки результатив ...
Задачи и содержание формирования культурно -
гигиенических навыков у младших дошкольников
Большое значение в охране и укреплении здоровья ребёнка имеет гигиеническое воспитание и воспитание культуры поведения. В дошкольном учреждении гигиеническое воспитание детей заключается в рациональном использовании условий внешней среды, сообщения детям элементарных гигиенических сведений и формир ...