Теорема 7. Пусть последовательность функций , непрерывно дифференцируемых на
, и последовательность их производных
равномерно сходятся на
, тогда предел последовательности непрерывно дифференцируемых функций
, т.е.
, непрерывно дифференцируем на указанном отрезке и верно равенство:
или
.
Доказательство
Обозначим через предельную функцию последовательностей функций
:
.
По условию теоремы равномерно сходится к предельной функции на
.
На основании ранее доказанных теорем функция непрерывна на
, следовательно, она будет интегрируема на
, т.е. существует
, он будет равен
(на основании теоремы о почленном интегрировании функциональных последовательностей).
По свойству определенного интеграла: , правую часть записанного выражения можно записать в виде следующего равенства:
(на основании теоремы о предельной сумме сходящихся последовательностей) и видно, что функция
дифференцируема для
.
Известна теорема, что если функция дифференцируема в точке, то она непрерывна в этой точке. Значит, функция непрерывна
.
В соответствии с теоремой, если функция непрерывна на , то она на нем интегрируема, т.е. существует
. Следовательно, функция
непрерывна в каждой точке
.
Из пунктов 4),
5), и 6) следует, что функция непрерывно дифференцируема на указанном отрезке.
Теорема доказана [14].
Следствие. Пусть функции непрерывно дифференцируемы на
и функциональные ряды:
равномерно сходятся на
. Тогда сумма функционального ряда
непрерывно дифференцируема на указанном отрезке и верно равенство:
=
(т.е. допустимо почленное дифференцирование у такого функционального ряда).
Доказательство
Обозначим предел частичных сумм
, т.е.
для функционального ряда
. По условию следствия должны равномерно сходиться последовательности функций
. На основании только что доказанной теоремы и функция
непрерывно дифференцируема, т.е.
. Последнее равенство можно переписать по-другому:
Образование, педагогика, воспитание:
Особенности методики организации и проведения игр-драматизаций с детьми старшего
дошкольного возраста в условиях дошкольного образовательного учреждения
Наиболее эффективными сюжетами для игр-драматизаций, с точки зрения развития навыков театрализованной игры, являются сюжеты сказок. Особая роль при этом отводится сюжетам русских народных сказок, которые радуют детей своим оптимизмом, добротой, любовью ко всему живому, мудрой ясностью в понимании ж ...
Оборудование площадок и инвентарь для игры в хоккей
Для организации игры в хоккей необходимо соответствующее оборудование площадок и инвентарь. О катке нужно позаботится заранее, еще до первых морозов. Площадку необходимо очистить от мусора и выровнять, чтобы при заливке она была ровной и гладкой. Как только ударят морозы, можно заливать каток. Разм ...
Формирование знаний на уроке окружающего мира с использованием презентации
на тему: «Животный и растительный мир болот»
По программе «Начальная школа XIX век» встречается тема «Животный и растительный мир болот». Целью урока: расширить представления учащихся о животном и растительном мире водоемов: болот. Развивающая: развивать ОУУН: учебно–управленческие умения: организовывать свой труд, контроль и анализ собственн ...