Золотая педагогика

Почленное дифференцирование функциональных рядов

Страница 1

Теорема 7. Пусть последовательность функций , непрерывно дифференцируемых на , и последовательность их производных равномерно сходятся на , тогда предел последовательности непрерывно дифференцируемых функций , т.е. , непрерывно дифференцируем на указанном отрезке и верно равенство:

или

.

Доказательство

Обозначим через предельную функцию последовательностей функций : .

По условию теоремы равномерно сходится к предельной функции на .

На основании ранее доказанных теорем функция непрерывна на , следовательно, она будет интегрируема на, т.е. существует , он будет равен (на основании теоремы о почленном интегрировании функциональных последовательностей).

По свойству определенного интеграла: , правую часть записанного выражения можно записать в виде следующего равенства: (на основании теоремы о предельной сумме сходящихся последовательностей) и видно, что функция дифференцируема для .

Известна теорема, что если функция дифференцируема в точке, то она непрерывна в этой точке. Значит, функция непрерывна .

В соответствии с теоремой, если функция непрерывна на , то она на нем интегрируема, т.е. существует . Следовательно, функция непрерывна в каждой точке .

Из пунктов 4),

5), и 6) следует, что функция непрерывно дифференцируема на указанном отрезке.

Теорема доказана [14].

Следствие. Пусть функции непрерывно дифференцируемы на и функциональные ряды: равномерно сходятся на . Тогда сумма функционального ряда непрерывно дифференцируема на указанном отрезке и верно равенство:

=

(т.е. допустимо почленное дифференцирование у такого функционального ряда).

Доказательство

Обозначим предел частичных сумм , т.е. для функционального ряда . По условию следствия должны равномерно сходиться последовательности функций . На основании только что доказанной теоремы и функция непрерывно дифференцируема, т.е. . Последнее равенство можно переписать по-другому:

Страницы: 1 2

Образование, педагогика, воспитание:

Омонимы в русском языке
В лексической системе русского языка есть слова, которые звучат одинаково, но имеют совершенно разные значения. Такие слова называют лексическими омонимами, а звуковое и грамматическое совпадение языковых единиц, которые семантически не связаны друг с другом называется омонимией. (Гр. – homos – оди ...

Определение роли социального педагога с детьми с ограниченными возможностями в специальной образовательной школе – интернат VIII вида
Цель: проанализировать направления деятельности социального педагога в специальной (коррекционной) образовательной школе – интернат VIII вида; Для реализации цели, формулируем следующие задачи: 1. Выделить направления деятельности социального педагога; 2. Разработать критерий для оценки результатив ...

Задачи и содержание формирования культурно - гигиенических навыков у младших дошкольников
Большое значение в охране и укреплении здоровья ребёнка имеет гигиеническое воспитание и воспитание культуры поведения. В дошкольном учреждении гигиеническое воспитание детей заключается в рациональном использовании условий внешней среды, сообщения детям элементарных гигиенических сведений и формир ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru