Теорема 7. Пусть последовательность функций , непрерывно дифференцируемых на , и последовательность их производных равномерно сходятся на , тогда предел последовательности непрерывно дифференцируемых функций , т.е. , непрерывно дифференцируем на указанном отрезке и верно равенство:
или
.
Доказательство
Обозначим через предельную функцию последовательностей функций : .
По условию теоремы равномерно сходится к предельной функции на .
На основании ранее доказанных теорем функция непрерывна на , следовательно, она будет интегрируема на, т.е. существует , он будет равен (на основании теоремы о почленном интегрировании функциональных последовательностей).
По свойству определенного интеграла: , правую часть записанного выражения можно записать в виде следующего равенства: (на основании теоремы о предельной сумме сходящихся последовательностей) и видно, что функция дифференцируема для .
Известна теорема, что если функция дифференцируема в точке, то она непрерывна в этой точке. Значит, функция непрерывна .
В соответствии с теоремой, если функция непрерывна на , то она на нем интегрируема, т.е. существует . Следовательно, функция непрерывна в каждой точке .
Из пунктов 4),
5), и 6) следует, что функция непрерывно дифференцируема на указанном отрезке.
Теорема доказана [14].
Следствие. Пусть функции непрерывно дифференцируемы на и функциональные ряды: равномерно сходятся на . Тогда сумма функционального ряда непрерывно дифференцируема на указанном отрезке и верно равенство:
=
(т.е. допустимо почленное дифференцирование у такого функционального ряда).
Доказательство
Обозначим предел частичных сумм , т.е. для функционального ряда . По условию следствия должны равномерно сходиться последовательности функций . На основании только что доказанной теоремы и функция непрерывно дифференцируема, т.е. . Последнее равенство можно переписать по-другому:
Образование, педагогика, воспитание:
Методологические основы эмпирического исследования специфики
профессионального взаимодействия социального педагога с семьей
Исследование проводилось в период с октября 2009г. по апрель 2010 г. на базе социально-реабилитационного центра для несовершеннолетних г. Курска. В исследовании приняло участие 23 семьи (общее количество человек 69 человек). В исследовании использовались следующие методики. 1. Методика диагностики ...
Познавательная активность учащихся, как педагогическая категория
Познание изучается рядом научных дисциплин. Эталоны и нормы познания, их соответствие познаваемой реальности, достоверность и недостоверность познания, взаимоотношение познания и иных форм отношения человека к миру (религии, морали, искусства) изучаются в специальном разделе философии – теории позн ...
Система образования Канады
Канада относится к числу государств, дипломы которых котируются во всем мире. Это неудивительно: Канада расходует на развитие системы образования больше средств, чем многие другие развитые страны. Канада является одним из мировых лидеров в области высоких технологий, аэрокосмической индустрии, микр ...