Золотая педагогика

Почленное дифференцирование функциональных рядов

Страница 1

Теорема 7. Пусть последовательность функций , непрерывно дифференцируемых на , и последовательность их производных равномерно сходятся на , тогда предел последовательности непрерывно дифференцируемых функций , т.е. , непрерывно дифференцируем на указанном отрезке и верно равенство:

или

.

Доказательство

Обозначим через предельную функцию последовательностей функций : .

По условию теоремы равномерно сходится к предельной функции на .

На основании ранее доказанных теорем функция непрерывна на , следовательно, она будет интегрируема на, т.е. существует , он будет равен (на основании теоремы о почленном интегрировании функциональных последовательностей).

По свойству определенного интеграла: , правую часть записанного выражения можно записать в виде следующего равенства: (на основании теоремы о предельной сумме сходящихся последовательностей) и видно, что функция дифференцируема для .

Известна теорема, что если функция дифференцируема в точке, то она непрерывна в этой точке. Значит, функция непрерывна .

В соответствии с теоремой, если функция непрерывна на , то она на нем интегрируема, т.е. существует . Следовательно, функция непрерывна в каждой точке .

Из пунктов 4),

5), и 6) следует, что функция непрерывно дифференцируема на указанном отрезке.

Теорема доказана [14].

Следствие. Пусть функции непрерывно дифференцируемы на и функциональные ряды: равномерно сходятся на . Тогда сумма функционального ряда непрерывно дифференцируема на указанном отрезке и верно равенство:

=

(т.е. допустимо почленное дифференцирование у такого функционального ряда).

Доказательство

Обозначим предел частичных сумм , т.е. для функционального ряда . По условию следствия должны равномерно сходиться последовательности функций . На основании только что доказанной теоремы и функция непрерывно дифференцируема, т.е. . Последнее равенство можно переписать по-другому:

Страницы: 1 2

Образование, педагогика, воспитание:

Описание пробного обучения и его результатов
Изложенные выше теоретические положения мы апробировали на практике в сентябре – октябре 2008 – 2009 учебного года в 4 «А» классе в реальных условиях учебного процесса в средней школе №133 г. Самары. Это означает, что нами было проведено пробное обучение. Уроки проходили в соответствии с расписание ...

Разработка системы проблемных уроков по теме «Основной капитал предприятия»
Разработка проблемных уроков осуществляется на основе методов проблемно-развивающего обучения. Монологический метод Таблица 1 Структурный элемент урока План деятельности преподавателя План деятельности учащихся Время этапа урока 1. Актуализация имеющихся знаний Сообщить учащимся тему урока и план о ...

Определение понятия речевой деятельности
Речь человека – сложившаяся исторически в процессе материальной преобразующей деятельности людей форма общения, опосредствованная языком. Речь является деятельностью, в процессе которой люди общаются друг с другом при посредстве языка. С помощью речи (внутренней и внешней) осуществляется также чело ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru