Золотая педагогика

Цели организации элективных курсов по математике

Другое о педагогике » Элективные курсы по математике в профильной школе » Цели организации элективных курсов по математике

Страница 2

§ развитие содержания базового курса математики, изучение которого в данной школе осуществляется на минимальном общеобразовательном уровне, что позволяет поддерживать на профильном уровне или получать дополнительную подготовку для сдачи ЕГЭ по математике;

§ дополнение содержания профильного курса математики, выступают его надстройкой, что позволяет профильному курсу быть в полной мере углублённым;

§ удовлетворение разнообразных познавательных интересов школьников, выходящих за рамки выбранного ими профиля, в различных сферах человеческой деятельности;

§ развитие математического мышления, воспитание мировоззрения и ряда личностных качеств средствами углублённого изучения математики.

Элективные курсы играют большую роль в совершенствовании школьного образования. Они позволяют производить поиск и экспериментальную проверку нового содержания, новых методов обучения, а также варьировать объём и сложность изучаемого материла.

Значит, элективные курсы позволяют поддержать изучение математики как профильного предмета на заданном профильном уровне или служат для внутрипрофильной специализации обучения и построения индивидуальных образовательных траекторий школьников.

Страницы: 1 2 

Образование, педагогика, воспитание:

Методика проведения занятий по обучению детей рассказыванию по картинкам
В методике развития речи обучения рассказыванию по картинам (описание и повествование) разработано в достаточной степени детально. Здесь методика опирается на классическое наследие западной и русской педагогики, использованное позднее применительно к работе с детьми дошкольного возраста Е.И. Плехее ...

Технологии личностно-ориентированного подхода в образовании
Понятие «технология» происходит от греческих слов «техно» - искусство, мастерство и «логос» - учение, и переводится как учение о мастерстве. Педагогические технологии, если правильно их использовать, гарантируют достижение того минимума, который определяется государственными стандартами в образован ...

Свойства равномерно сходящихся функциональных последовательностей и рядов
Теорема 4. Если функции непрерывны в точке и функциональный ряд равномерно сходится на множестве Х, то его сумма S (х) тоже непрерывна в точке . Доказательство. Пусть - частичная сумма функционального ряда. В соответствии с условиями теоремы, функциональный ряд равномерно сходится, значит, выполняе ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru