Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для
0
,
,
N и
выполнялось неравенство:
.
Доказательство необходимости
Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область определения этих функций. Требуется доказать, что для 0
N,
,
,
N и
:
.
Согласно определению равномерной сходимости функциональной последовательности Sn (x), существует такая предельная функция S (x), к которой эта последовательность сходится, т.е. 0 (
),
N,
,
:
.
При тех же условиях существует такой номер, что при
будет выполняться неравенство:
.
Сложим два неравенства одинакового смысла:
+
В левой части слагаемые поменяем местами и воспользуемся свойством модуля разности двух действительных чисел:
+
Следовательно,
0,
,
,
N.
Доказательство достаточности:
Пусть 0
N,
,
N:
. Требуется доказать, что
равномерно сходится к предельной функции S (x) на X.
Образование, педагогика, воспитание:
Когнитивно стилевой подход
Кстати, когда мы говорим о когнитивном стиле или о типе мышления, следует учитывать, что индивидуальный стиль окрашивает индивидуальную специфику и восприятия, и переработки, и воспроизведения той или иной информации. Каждый вышележащий уровень психического развития содержит в себе — в более развер ...
Функции наглядности в учебнике математики. Методы
работы с учебником
Не все виды наглядностей, применяемых иллюстраций имеют одинаковое значение для раскрытия изучаемых закономерностей. На процесс решения математической задачи существенное влияние оказывает схема и предметно-аналитическая картинка, в которой отражены количественные отношения искомого и данного. Выде ...
Значение речи для развития познавательных процессов, эмоционального и
социального развития детей с нарушениями слуха
Проблемы, связанные с определением значения речи для развития мышления и рассмотрением взаимодействия речи и мышления, подвергались обсуждению уже в античной философии. В соответствии с монистической моделью Платона, влияние которой сказывается до настоящего времени в различных направлениях бихевио ...