Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для
0
,
,
N и
выполнялось неравенство:
.
Доказательство необходимости
Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область определения этих функций. Требуется доказать, что для
0
N,
,
,
N и
:
.
Согласно определению равномерной сходимости функциональной последовательности Sn (x), существует такая предельная функция S (x), к которой эта последовательность сходится, т.е.
0 (
),
N,
,
:
.
При тех же условиях существует такой номер
, что при ![]()
будет выполняться неравенство:
.
Сложим два неравенства одинакового смысла:
+
В левой части слагаемые поменяем местами и воспользуемся свойством модуля разности двух действительных чисел:
![]()
+![]()
Следовательно,
0,
,
,
N.
Доказательство достаточности:
Пусть
0
N, ![]()
,
N:
. Требуется доказать, что
равномерно сходится к предельной функции S (x) на X.
Образование, педагогика, воспитание:
Повышение уровня двигательной активности и дозировка физической нагрузки на
физкультурных занятиях
В последние годы ведущими направлениями в исследованиях по физической культуре стали изучение эффективности двигательной активности детей, совершенствование количественных и качественных показателей развития движений. Исследования профессора И.А.Аршавского говорят о том, что у ребенка восстановлени ...
Выявление интереса у детей подготовительной к школе группы к играм с
элементами спорта
Констатирующий этап проводился с 11.09.10 по 12.10.12. Цель: выявить уровень развития быстроты у детей подготовительной к школе группы, уровень физической подготовленности игры в хоккей, выявить интерес у детей данной группы к играм с элементами спорта, выявить место хоккея в работе с детьми седьмо ...
Почленное
дифференцирование функциональных рядов
Теорема 7. Пусть последовательность функций , непрерывно дифференцируемых на , и последовательность их производных равномерно сходятся на , тогда предел последовательности непрерывно дифференцируемых функций , т.е. , непрерывно дифференцируем на указанном отрезке и верно равенство: или . Доказатель ...