Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для
0
,
,
N и
выполнялось неравенство:
.
Доказательство необходимости
Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область определения этих функций. Требуется доказать, что для
0
N,
,
,
N и
:
.
Согласно определению равномерной сходимости функциональной последовательности Sn (x), существует такая предельная функция S (x), к которой эта последовательность сходится, т.е.
0 (
),
N,
,
:
.
При тех же условиях существует такой номер
, что при ![]()
будет выполняться неравенство:
.
Сложим два неравенства одинакового смысла:
+
В левой части слагаемые поменяем местами и воспользуемся свойством модуля разности двух действительных чисел:
![]()
+![]()
Следовательно,
0,
,
,
N.
Доказательство достаточности:
Пусть
0
N, ![]()
,
N:
. Требуется доказать, что
равномерно сходится к предельной функции S (x) на X.
Образование, педагогика, воспитание:
Я-концепция и технология построения имиджа педагога
Формирование Я-концепции человека происходит при накоплении опыта решения жизненных задач и при оценивании их со стороны других людей. Внутренняя структура имиджа также содержит три похожие составляющие. Следует их рассмотреть. Первая часть внутренней структуры - это представление человека о себе с ...
Гражданская активность и особенности ее формирования у учащихся школы
надомного обучения
В настоящее время в России на государственном уровне признано, что гражданско-правовое образование является одним из приоритетных направлений образовательной политики. Существует программа воспитания демократической гражданственности и образования в области прав человека, принятая Советом Европы 15 ...
Специфика организации
проектной деятельности учащихся
Метод проектов зародился во второй половине XIX века в сельскохозяйственных школах США и основывался на теоретических концепциях прагматической педагогики, основоположником которой был американский философ-идеалист Джон Дьюи. Метод был направлен на то, чтобы найти способы, пути развития самостоятел ...