Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для
0
,
,
N и
выполнялось неравенство:
.
Доказательство необходимости
Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область определения этих функций. Требуется доказать, что для
0
N,
,
,
N и
:
.
Согласно определению равномерной сходимости функциональной последовательности Sn (x), существует такая предельная функция S (x), к которой эта последовательность сходится, т.е.
0 (
),
N,
,
:
.
При тех же условиях существует такой номер
, что при ![]()
будет выполняться неравенство:
.
Сложим два неравенства одинакового смысла:
+
В левой части слагаемые поменяем местами и воспользуемся свойством модуля разности двух действительных чисел:
![]()
+![]()
Следовательно,
0,
,
,
N.
Доказательство достаточности:
Пусть
0
N, ![]()
,
N:
. Требуется доказать, что
равномерно сходится к предельной функции S (x) на X.
Образование, педагогика, воспитание:
Работа с кадрами дошкольного учреждения
Современная практика работы дошкольных учреждений показывает, что далеко не все педагоги и родители знают особенности психофизического, эмоционального и интеллектуального развития ребенка-дошкольника и, как следствие, слабо владеют приемами здоровьесберегающей педагогики. Для более эффективного вза ...
Стиль и результат
Связи стиля и результата сложны и многообразны. Результат зависит от индивидуальных особенностей субъектов, от адекватности индивидуального стиля, его соответствия индивидуальности человека и соответствия стиля условиям и задачам деятельности. Результат зависит от структурированности деятельности с ...
Система образования Канады
Канада относится к числу государств, дипломы которых котируются во всем мире. Это неудивительно: Канада расходует на развитие системы образования больше средств, чем многие другие развитые страны. Канада является одним из мировых лидеров в области высоких технологий, аэрокосмической индустрии, микр ...