Золотая педагогика

Критерий Коши равномерной сходимости функциональной последовательности

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Критерий Коши равномерной сходимости функциональной последовательности

Страница 1

Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для

0 , , N и выполнялось неравенство:

.

Доказательство необходимости

Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область определения этих функций. Требуется доказать, что для 0 N, , ,N и :

.

Согласно определению равномерной сходимости функциональной последовательности Sn (x), существует такая предельная функция S (x), к которой эта последовательность сходится, т.е. 0 (), N, , : .

При тех же условиях существует такой номер, что при будет выполняться неравенство: .

Сложим два неравенства одинакового смысла:

+

В левой части слагаемые поменяем местами и воспользуемся свойством модуля разности двух действительных чисел:

+

Следовательно, 0, , ,N.

Доказательство достаточности:

Пусть 0 N, , N: . Требуется доказать, что равномерно сходится к предельной функции S (x) на X.

Страницы: 1 2

Образование, педагогика, воспитание:

Работа с кадрами дошкольного учреждения
Современная практика работы дошкольных учреждений показывает, что далеко не все педагоги и родители знают особенности психофизического, эмоционального и интеллектуального развития ребенка-дошкольника и, как следствие, слабо владеют приемами здоровьесберегающей педагогики. Для более эффективного вза ...

Стиль и результат
Связи стиля и результата сложны и многообразны. Результат зависит от индивидуальных особенностей субъектов, от адекватности индивидуального стиля, его соответствия индивидуальности человека и соответствия стиля условиям и задачам деятельности. Результат зависит от структурированности деятельности с ...

Система образования Канады
Канада относится к числу государств, дипломы которых котируются во всем мире. Это неудивительно: Канада расходует на развитие системы образования больше средств, чем многие другие развитые страны. Канада является одним из мировых лидеров в области высоких технологий, аэрокосмической индустрии, микр ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru