Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для
0
,
,
N и
выполнялось неравенство:
.
Доказательство необходимости
Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область определения этих функций. Требуется доказать, что для
0
N,
,
,
N и
:
.
Согласно определению равномерной сходимости функциональной последовательности Sn (x), существует такая предельная функция S (x), к которой эта последовательность сходится, т.е.
0 (
),
N,
,
:
.
При тех же условиях существует такой номер
, что при ![]()
будет выполняться неравенство:
.
Сложим два неравенства одинакового смысла:
+
В левой части слагаемые поменяем местами и воспользуемся свойством модуля разности двух действительных чисел:
![]()
+![]()
Следовательно,
0,
,
,
N.
Доказательство достаточности:
Пусть
0
N, ![]()
,
N:
. Требуется доказать, что
равномерно сходится к предельной функции S (x) на X.
Образование, педагогика, воспитание:
Психолого-педагогическая характеристика старшего дошкольного
возраста
Старший дошкольный возраст (5-7 лет) – это период интенсивного развития психических процессов и процессов познавательной деятельности. Это период овладения социальным пространством человеческих отношений через общение с близкими взрослыми, а также через игровые и реальные отношения со сверстниками. ...
Дидактическая игра на уроке труда
Подготовка младших школьников к трудовой деятельности остается одной из основных и актуальных задач современной школы. Началом такой подготовки является формирование у учащихся интереса к труду и потребности овладеть определенными трудовыми умениями. Наиболее успешному осуществлению данной цели спо ...
Знакомство с деятельностью учителя-предметника
Особенности программы, по которой работает учитель – Бедаш Наталья Николаевна в своей работе использует программу Владимира Васильевича Пасечника, корректируя ее в зависимости от учебных возможностей учащихся. Перечень учебно-методических пособий, дидактических материалов, которыми пользуется учите ...