Золотая педагогика

Критерий Коши равномерной сходимости функциональной последовательности

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Критерий Коши равномерной сходимости функциональной последовательности

Страница 1

Теорема 1. Для того чтобы функциональная последовательность Sn (х) равномерно сходилась на множестве Х, необходимо и достаточно, чтобы для

0 , , N и выполнялось неравенство:

.

Доказательство необходимости

Пусть последовательность функций Sn (x) равномерно сходится на множестве Х, где Х - область определения этих функций. Требуется доказать, что для 0 N, , ,N и :

.

Согласно определению равномерной сходимости функциональной последовательности Sn (x), существует такая предельная функция S (x), к которой эта последовательность сходится, т.е. 0 (), N, , : .

При тех же условиях существует такой номер, что при будет выполняться неравенство: .

Сложим два неравенства одинакового смысла:

+

В левой части слагаемые поменяем местами и воспользуемся свойством модуля разности двух действительных чисел:

+

Следовательно, 0, , ,N.

Доказательство достаточности:

Пусть 0 N, , N: . Требуется доказать, что равномерно сходится к предельной функции S (x) на X.

Страницы: 1 2

Образование, педагогика, воспитание:

Основные принципы внеклассной работы
Условием успешной реализации регионального компонента образованием является его кадровое и научно - методическое обеспечение. Способность учителя связать базовый (федеральный) компонент содержания образования с особенностями региона, его исторической, географической, экономической, социальной, экол ...

Выборочный метод отбора исследуемых
Несплошное исследование организуется специально, чтобы при определенных условиях, не охватывая всех единиц изучаемого явления, можно было получить такое количество материалов, которое гарантировало бы наибольшую точность выводов по генеральной совокупности. В силу этого несплошное исследование подч ...

Понятие предметно-развивающий среды и ее влияние на развитие игры-драматизации в старшем дошкольном возрасте
Проблема среды рассматривалась в трудах М.Я. Басова, П.П. Блонского, А.Б. Залкина и других. Уже в 1927 году ставится вопрос о роли среды в процессе развития ребенка на первом педагогическом съезде, где были сделаны следующие выводы: Среда является лишь фактором, содействующим процессу развертывания ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru