Так как по условию достаточности выполняется неравенство , то какое бы х из Х не было взято, функциональная последовательность
будет числовой последовательностью, а для числовой последовательности выполняется критерий Коши сходимости числовой последовательности
, который утверждает, что эта последовательность
сходится.
3) Значит, у функциональной последовательности
существует конечный предел, а это доказывает существование предельной функции для функциональной последовательности:
. Кроме того,
.
А это означает, что функциональная последовательность будет сходиться на множестве Х, так как будет выполняться неравенство: , перейдем к пределу при
, а n-const, получим:
- условие равномерной сходимости функциональной последовательности по определению.
Теорема доказана .
Образование, педагогика, воспитание:
Передача состояния времен года в картинах художников
Пейзаж завоевал место одного из ведущих жанров живописи. Его язык стал, подобно поэзии, способом проявления высоких эстетических чувств художника, областью искусства, в которой выражаются глубокие и серьезные истины о жизни и судьбах человечества. Вглядываясь в произведения пейзажной живописи, прис ...
Воспитание самостоятельности и активности
Главной задачей интеллектуальной готовности ребенка является формирование у ребенка определенных знаний и умений на основе включения его в активную учебную деятельность. В процессе решения этой задачи педагог использует разнообразные методы и приемы: объяснение, показ, вопросы, оценка и др. Формиро ...
Музыкальное образование как важный компонент развития школьника
Разные виды искусства обладают специфическими средствами воздействия на человека. Музыка же имеет возможность воздействовать на ребенка на самых ранних этапах. Доказано, что даже внутриутробный период чрезвычайно важен для последующего развития человека: музыка, которую слушает мать, оказывает влия ...