Теорема 4. Если функции непрерывны в точке
и функциональный ряд
равномерно сходится на множестве Х, то его сумма S (х) тоже непрерывна в точке
.
чем занять себя в свободное время
Доказательство.
Пусть - частичная сумма функционального ряда.
В соответствии с условиями теоремы, функциональный ряд равномерно сходится, значит, выполняется и равномерная сходимость последовательности частичных сумм.
На основании определения равномерной сходимости функциональной последовательности можно записать: 0 (
),
N,
:
или
.
Так как функции исследуемого ряда непрерывны в точке
по условию теоремы, то частичная сумма
будет непрерывна в точке
, как сумма состоящая из конечного числа непрерывных функций по теореме о непрерывности функции полученной в результате алгебраического сложения и умножения двух непрерывных функций:
=
+
+…+
.
На основании определения непрерывности функции в точке на языке
можно записать:
0
будет существовать такое
,
,
:
.
Так как последовательность функций будет равномерно сходиться к предельной функции
, то и последовательность функций
будет тоже равномерно сходиться к
.
На основании определения равномерной сходимости функциональной последовательности можно записать: (
0), (
N), (
):
.
Сложим три неравенства одинакового смысла пунктов 3,5,7: +
+
. Воспользуемся свойством модуля суммы действительных чисел
, получим:
.
Следовательно, - условие непрерывности функции
в точке
.
Образование, педагогика, воспитание:
Понятие о технологии осуществления педагогического процесса
Технологию непосредственного осуществления педагогического процесса можно представить как совокупность последовательно реализуемых технологий передачи информации, организации учебно-познавательной и других видов развивающей деятельности, стимулирования активности воспитанников, регулирования и корр ...
Цели организации элективных курсов по математике
Принципиальным положением организации школьного математического образования в настоящее время является дифференциация обучения математике – уровневая дифференциация и профильная дифференциация в старших классах средней школы. Программа по математике для средней общеобразовательной школы, работающей ...
Игра как средство развития общения со сверстниками детей старшего дошкольного
возраста
Психологическая теория деятельности в рамках теоретических воззрений. Л.С. Выготского, А.Н. Леонтьева выделяет три основных вида человеческой деятельности – трудовую, игровую и учебную. Все виды тесно взаимосвязаны. Анализ психолого-педагогической литературы по теории возникновения игры в целом поз ...