.
С учетом записанного равенства, равенство пункта 5 примет вид:
.
Сравним равенства пункта 3 и пункта 7. Правые части равны, значит, равны и левые: .
Теорема доказана [14].
§9. Почленное интегрирование функциональных рядов
Теорема 6. Если последовательность непрерывных на функций
сходится равномерно на указанном отрезке к предельной функции
, то
последовательность определенных интегралов с переменным верхним пределом
будет сходиться равномерно на
к определенному интегралу
, причем будет справедлива следующая формула:
.
1) Так как по условию теоремы последовательность функций равномерно сходится к пределу функции
на
т.е.
, то
функция будет непрерывна на
на основании теоремы 5.
2) Известна теорема, что если функция непрерывна на , то она интегрируема на указанном отрезке, т.е. существует определенный интеграл
,
3) В силу равномерной сходимости последовательности функции к пределу функции
на основании определения равномерной сходимости функциональной последовательности можно записать:
.
4) Рассмотрим разность двух определенных интегралов с переменным верхним пределом под знаком модуля:
=
(на основании свойства определенного интеграла).
5) С учетом неравенства пункта 3 можно написать:
.
6) Если правую часть последнего неравенства заменить на , то получим неравенство:
, что равносильно выражению
, но
, поэтому
,
.
Теорема доказана [14].
Следствие. Пусть функции непрерывны на
и функциональный ряд
равномерно сходится на указанном отрезке, тогда
функциональный ряд вида
будет равномерно ходиться на отрезке
к
или к
, т.е. справедлива
Образование, педагогика, воспитание:
Отбор грамматического материала для обучения устной речи и
чтению
Сущность отбора грамматического материала для школы заключается в создании такого грамматического минимума, который был бы посилен для усвоения и достаточен для выполнения коммуникативно-значимых задач обучения. При решении вопроса об отборе грамматического минимума учитываются источники и принципы ...
Взаимосвязь процессов функционирования и развития в Омской области с
элементами содержания общего образования
Регионально-национальный компонент содержания общего образования предопределяется содержанием понятия «регион». Регион – это территория, объединенная общим признаком, отличающим данную территорию от соседних территорий. Исходя из этого определения, очевидно, что в зависимости от выявленных признако ...
Психолого-педагогическая характеристика игр - драматизаций
Игры-драматизации - это особые игры, в которых ребенок разыгрывает знакомый сюжет, развивает его или придумывает новый. Важно, что в такой игре ребенок создает свой маленький мир и чувствует себя хозяином, творцом происходящих событий. Он управляет действиями персонажей и строит их отношения. Ребен ...