формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Игровые технологии преподавания происхождения сущности государства и права
в современной школе
Игра – это определенная целостная реальность, обязательно как-то соотносящаяся с существующим миром («кусок» жизни). В этой реальности действуют и общаются люди. Соответственно, в процессе игры играющие получают опыт. Составляющими опыта могут быть и знания, и эмоциональные впечатления, и навыки, и ...
Понятие и значение преподавания происхождения сущности государства и права
в современной школе
Процесс преподавания происхождения сущности государства и права в современной школе представляет собой процесс, способствующий воспитанию социально-активной личности, которая способна решать общественно-значимые задачи, опираясь на приоритет государства и права. Являясь одним из основных институтов ...
Использование метода проектов при обучении информатике в начальной школе
Таким образом, раскрыв содержание понятий: «метод», «метод проектов», « проект», «учебная тема», «мышление», «младший школьный возраст» и выявив особенности метода проектов, мы пришли к выводу о том, что использование данного метода на уроках информатики способствует более эффективному усвоению уча ...