Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 4

формула: .

Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.

.

Доказательство

1) Так как по условию следствия функциональный ряд равномерно сходится на , то частичная последовательность его функций будет также равномерно сходиться к предельной функции , т.е. .

Причем и непрерывны в каждой точке отрезка на основании только что доказанной теоремы:

.

3) Но представляет собой частичную сумму такого ряда: .

4) А является суммой ряда .

На основании доказанной теоремы можно записать:

5) Последнее равенство можно переписать следующим образом:

.

Теорема доказана.

Замечание. Условие равномерной сходимости ряда на является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.

Страницы: 1 2 3 4 

Образование, педагогика, воспитание:

Проблема сохранения здоровья подрастающего поколения
Конец XX столетия ознаменован целым комплексом глобальных изменений в социальной, экономической и духовной сферах общества, утратой ранее значимых ценностей и возникновением новых, формированием новой философии жизни. Человеческое сообщество захлестывает ускоряющийся динамизм социальных процессов, ...

Характеристика задач музыкального образования и проблема оценки результатов
Основными задачами музыкального воспитания являются следующие (Радынова О.П.): развивать музыкальные и творческие способности детей с учетом возможностей каждого ребенка с помощью различных видов музыкальной деятельности; сформировать начала музыкальной культуры, способствовать формированию общей д ...

История развития и становления
Идея проблемного обучения не нова. Величайшие педагоги прошлого всегда искали пути преобразования процесса учения в радостный процесс познания, развития умственных сил и способностей учащихся (Я. А. Коменский, Ж. Ж. Руссо, И. Г. Песталоцци, Ф. А. Дистервег, К. Д. Ушинский и др.). В XX столетии идеи ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru