Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 4

формула: .

Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.

.

Доказательство

1) Так как по условию следствия функциональный ряд равномерно сходится на , то частичная последовательность его функций будет также равномерно сходиться к предельной функции , т.е. .

Причем и непрерывны в каждой точке отрезка на основании только что доказанной теоремы:

.

3) Но представляет собой частичную сумму такого ряда: .

4) А является суммой ряда .

На основании доказанной теоремы можно записать:

5) Последнее равенство можно переписать следующим образом:

.

Теорема доказана.

Замечание. Условие равномерной сходимости ряда на является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.

Страницы: 1 2 3 4 

Образование, педагогика, воспитание:

Методические рекомендации по проведению практических занятий
Концепция целенаправленного развития у студентов готовности к самообразованию приводит к тому, что самостоятельная деятельность студентов, управляемая и организуемая, тесно смыкается с образованием, которое является составной и закономерной частью целостной ситемы учебно-воспитательной работы. В ра ...

Синонимы в русском языке
Лексика как раздел языковедения впервые введена в школьную программу по русскому языку в 1970 году. Работа по лексике в школе имеет огромное как общеобразовательное, так и практическое значение. Общеобразовательное значение лексики заключается в том, что ее изучение расширяет знания учащихся о язык ...

Образование в США
Считается, что США – наилучший вариант для магистратуры и докторантуры. Многие американские университеты играют первую роль в исследовательских проектах, имеющих международное значение. Их уровень определяется отличной лабораторно-технической базой, легким доступом колледж всем мыслимым источникам ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru