Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 4

формула: .

Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.

.

Доказательство

1) Так как по условию следствия функциональный ряд равномерно сходится на , то частичная последовательность его функций будет также равномерно сходиться к предельной функции , т.е. .

Причем и непрерывны в каждой точке отрезка на основании только что доказанной теоремы:

.

3) Но представляет собой частичную сумму такого ряда: .

4) А является суммой ряда .

На основании доказанной теоремы можно записать:

5) Последнее равенство можно переписать следующим образом:

.

Теорема доказана.

Замечание. Условие равномерной сходимости ряда на является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.

Страницы: 1 2 3 4 

Образование, педагогика, воспитание:

Творческие игры как средство формирования коммуникативных навыков учащихся
В этом пункте рассмотрим два вида игр – это ролевые игры и драматизацию. Урок иностранного языка рассматривается как социальное явление, где классная аудитория – это определенная социальная среда, в которой учитель и учащиеся вступают в определенные социальные отношения друг с другом, где учебный п ...

Свойства равномерно сходящихся функциональных последовательностей и рядов
Теорема 4. Если функции непрерывны в точке и функциональный ряд равномерно сходится на множестве Х, то его сумма S (х) тоже непрерывна в точке . Доказательство. Пусть - частичная сумма функционального ряда. В соответствии с условиями теоремы, функциональный ряд равномерно сходится, значит, выполняе ...

Разработка урока по истории средних веков с использованием наглядного метода обучения
Тема урока: Открытие Америки и морского пути в Индию. Цель урока: познакомить учащихся с причинами Великих географических открытий, их ходом, итогами и значением. Задачи: 1. Образовательная: Изучить экспедицию Ф. Магеллана, Васко да Гамы, Хр. Колумба. 2. Развивающая: развивать умение работы с текст ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru