формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Паронимы в русском языке
Паронимы (гр. para - возле + onima - имя) - это однокорневые слова, близкие по звучанию, но не совпадающие в значениях: подпись - роспись, одеть - надеть, главный - заглавный. Паронимы, как правило, относятся к одной части речи и выполняют в предложении аналогичные синтаксические функции. Паронимам ...
Понятие предметно-развивающий среды и ее влияние на развитие игры-драматизации
в старшем дошкольном возрасте
Проблема среды рассматривалась в трудах М.Я. Басова, П.П. Блонского, А.Б. Залкина и других. Уже в 1927 году ставится вопрос о роли среды в процессе развития ребенка на первом педагогическом съезде, где были сделаны следующие выводы: Среда является лишь фактором, содействующим процессу развертывания ...
Методологические основы эмпирического исследования специфики
профессионального взаимодействия социального педагога с семьей
Исследование проводилось в период с октября 2009г. по апрель 2010 г. на базе социально-реабилитационного центра для несовершеннолетних г. Курска. В исследовании приняло участие 23 семьи (общее количество человек 69 человек). В исследовании использовались следующие методики. 1. Методика диагностики ...