Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 4

формула: .

Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.

.

Доказательство

1) Так как по условию следствия функциональный ряд равномерно сходится на , то частичная последовательность его функций будет также равномерно сходиться к предельной функции , т.е. .

Причем и непрерывны в каждой точке отрезка на основании только что доказанной теоремы:

.

3) Но представляет собой частичную сумму такого ряда: .

4) А является суммой ряда .

На основании доказанной теоремы можно записать:

5) Последнее равенство можно переписать следующим образом:

.

Теорема доказана.

Замечание. Условие равномерной сходимости ряда на является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.

Страницы: 1 2 3 4 

Образование, педагогика, воспитание:

Урок истории в практике школы
В данной главе рассматривается современный урок истории на практике. Здесь изложены наблюдения и применяемые автором на практике, основные составляющие принципы и теоретические основы современного урока истории. В предыдущей главе рассматривались основные теоретические положения современного урока ...

Техническое оснащение в современной школе
Доска в образовании не просто инструмент для демонстрации, но и обучения, она породила специальную систему коммуникации, прямую и обратную связь - один учитель может работать с несколькими учениками. Доска это особое - познавательное - окно в мир. Но со временем он стал привычен и должен был преобр ...

Структура организаторской деятельности и ее особенности
Организаторская деятельность, будучи отнесенной к отдельному человеку, есть не что иное, как система взаимосвязанных действий (технологий), направленных на объединение групп людей для достижения общей цели. Особое место организаторская деятельность занимает в структуре целостной деятельности педаго ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru