формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Цели и задачи профильного обучения
В наше время одним из важнейших направлений модернизации системы образования в России остаётся переход к старшей профильной школе. Необходимость перехода старшей ступени на профильное обучение определена Правительством России в «Концепции модернизации российского образования на период до 2010 года» ...
Значение речи для развития познавательных процессов, эмоционального и
социального развития детей с нарушениями слуха
Проблемы, связанные с определением значения речи для развития мышления и рассмотрением взаимодействия речи и мышления, подвергались обсуждению уже в античной философии. В соответствии с монистической моделью Платона, влияние которой сказывается до настоящего времени в различных направлениях бихевио ...
Воспитание самостоятельности и активности
Главной задачей интеллектуальной готовности ребенка является формирование у ребенка определенных знаний и умений на основе включения его в активную учебную деятельность. В процессе решения этой задачи педагог использует разнообразные методы и приемы: объяснение, показ, вопросы, оценка и др. Формиро ...