формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Изображение предметов, животных, птиц
Упражнения состоят из серии последовательных движений и сопровождаются стихами, считалочками, ритм которых соответствует ритму выполняемого упражнения. При выполнении каждого упражнения нужно стараться вовлекать все пальчики, упражнения выполнять как правой, так и левой рукой. Нужно добиваться, что ...
Профессиональная квалификация педагога
Нормативы и сферы деятельности педагога в принципе неизменяемы, а вот его становление — движение от возможного к действительному, начинаясь с предпрофессионального поиска себя, затем профессионального образования и продолжаясь в ходе работы по специальности, — во всех его аспектах индивидуально, т. ...
Почленное
дифференцирование функциональных рядов
Теорема 7. Пусть последовательность функций , непрерывно дифференцируемых на , и последовательность их производных равномерно сходятся на , тогда предел последовательности непрерывно дифференцируемых функций , т.е. , непрерывно дифференцируем на указанном отрезке и верно равенство: или . Доказатель ...