Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 4

формула: .

Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.

.

Доказательство

1) Так как по условию следствия функциональный ряд равномерно сходится на , то частичная последовательность его функций будет также равномерно сходиться к предельной функции , т.е. .

Причем и непрерывны в каждой точке отрезка на основании только что доказанной теоремы:

.

3) Но представляет собой частичную сумму такого ряда: .

4) А является суммой ряда .

На основании доказанной теоремы можно записать:

5) Последнее равенство можно переписать следующим образом:

.

Теорема доказана.

Замечание. Условие равномерной сходимости ряда на является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.

Страницы: 1 2 3 4 

Образование, педагогика, воспитание:

Цели современного образования. Современные образовательные парадигмы
Учебные цели Выявление мнений различных социальных групп применительно к целям высшего образования. Изучение сущности традиционной и гуманистической образовательных парадигм. Определение своего места в парадигмальном пространстве. Отводимое время – 2 часа Структура занятия Вступительное слово. Ввод ...

Сущность понятия урок в современном ракурсе
В данной главе рассматривается и анализируется современный урок истории. Здесь автор анализирует сущность самого понятия урок, рассматривает проблемы связанные со структурой, типом и классификацией современного урока истории. Значительное место в данной главе уделяется проблеме подготовке учителя к ...

Воспитание самостоятельности и активности
Главной задачей интеллектуальной готовности ребенка является формирование у ребенка определенных знаний и умений на основе включения его в активную учебную деятельность. В процессе решения этой задачи педагог использует разнообразные методы и приемы: объяснение, показ, вопросы, оценка и др. Формиро ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru