формула:
.
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд
равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем
и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но
представляет собой частичную сумму такого ряда:
.
4) А
является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на
является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Оздоравливающие пальчиковые
игры
Многие уже слышали об иглорефлексотерапии. Через активные точки на коже человека не только иглами, но и лазерным лучом, и электропунктурой восстанавливают работу энергетических каналов. Каждый такой канал регулирует деятельность определенного органа, а то и системы органов тела. Пользуйтесь целебны ...
Организм ребенка как саморазвивающаяся и
саморегулирующаяся система
Организм ребенка - это живая саморазвивающаяся и саморегулирующаяся система, живой аппарат, обеспечивающий удовлетворение всех родовых и прижизненно возникающих потребностей и психическую деятельность человека. Организм состоит из огромного числа клеток различного строения, в зависимости от того, к ...
Механизм речи в концепции Н.И. Жинкина
Н.И. Жинкиным выявлено, что порождение и восприятие речи являются процессами поэтапной реализации внутренней программы, которая управляется речевым механизмом. Вне зависимости от трактовки речи как говорения или как процесса общения посредством говорения и слушания, закономерности функционирования ...