формула: .
Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.
.
Доказательство
1) Так как по условию следствия функциональный ряд равномерно сходится на
, то частичная последовательность его функций будет также равномерно сходиться к предельной функции
, т.е.
.
Причем и
непрерывны в каждой точке отрезка
на основании только что доказанной теоремы:
.
3) Но представляет собой частичную сумму такого ряда:
.
4) А является суммой ряда
.
На основании доказанной теоремы можно записать:
5) Последнее равенство можно переписать следующим образом:
.
Теорема доказана.
Замечание. Условие равномерной сходимости ряда на является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.
Образование, педагогика, воспитание:
Оздоравливающие пальчиковые
игры
Многие уже слышали об иглорефлексотерапии. Через активные точки на коже человека не только иглами, но и лазерным лучом, и электропунктурой восстанавливают работу энергетических каналов. Каждый такой канал регулирует деятельность определенного органа, а то и системы органов тела. Пользуйтесь целебны ...
Выявление
нарушений графомоторных навыков у детей с нарушениями интеллекта
Практическое исследование проводилось на базе Черновской специальной (коррекционной) школы - интерната VIII вида г. Читы. В исследовании принимали участие ученики второго класса с интеллектуальными нарушениями (8 - 9 лет) в количестве 10 человек. Цель практического исследования - изучить особенност ...
Теоретические и методические подходы к понятию "общение" и его
развитию в дошкольном возрасте
Несмотря на многообразие и вариативность исследований, посвященных общению, в настоящее время отсутствует единый подход к определению и характеристике этого феномена. Среди исследователей существуют различные точки зрения на сущность, функцию общения: 1) общение - это коммуникация, коммуникативный ...