Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 4

формула: .

Таким образом, можно сказать, что функциональный ряд можно почленно интегрировать, т.е.

.

Доказательство

1) Так как по условию следствия функциональный ряд равномерно сходится на , то частичная последовательность его функций будет также равномерно сходиться к предельной функции , т.е. .

Причем и непрерывны в каждой точке отрезка на основании только что доказанной теоремы:

.

3) Но представляет собой частичную сумму такого ряда: .

4) А является суммой ряда .

На основании доказанной теоремы можно записать:

5) Последнее равенство можно переписать следующим образом:

.

Теорема доказана.

Замечание. Условие равномерной сходимости ряда на является лишь достаточным, но не необходимым, поэтому некоторые функциональные ряды, которые равномерно не сходятся, могут быть почленно проинтегрированы.

Страницы: 1 2 3 4 

Образование, педагогика, воспитание:

Основные нормативно-правовые акты по правам ребенка в Российском законодательстве
Конституция Российской Федерации и права ребенка Основным правовым актом в нашей стране является принятая 12 декабря 1993 года Конституция Российской Федерации. В главе "Права человека" Конституции закреплены отвечающие духу и букве международных договоров и соглашений, заключенных Россие ...

Музыкальное образование как важный компонент развития школьника
Разные виды искусства обладают специфическими средствами воздействия на человека. Музыка же имеет возможность воздействовать на ребенка на самых ранних этапах. Доказано, что даже внутриутробный период чрезвычайно важен для последующего развития человека: музыка, которую слушает мать, оказывает влия ...

Когнитивно стилевой подход
Кстати, когда мы говорим о когнитивном стиле или о типе мышления, следует учитывать, что индивидуальный стиль окрашивает индивидуальную специфику и восприятия, и переработки, и воспроизведения той или иной информации. Каждый вышележащий уровень психического развития содержит в себе — в более развер ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru