Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 29

Исследуем ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

так как , то условие абсолютной сходимости ряда не выполняется при R. Следовательно, ряд расходится.

Значит, к заданному функциональному ряду нельзя применить теорему о почленном дифференцировании.

Ответ: Теорему о почленном дифференцировании к ряду применить нельзя.

Пример №39 (№115 из [10]).

Показать, что ряд допускает почленное интегрирование на отрезке , написать полученный при этом ряд.

Решение

Функциональный ряд можно интегрировать почленно на отрезке , если на этом отрезке его члены непрерывны, и ряд равномерно сходится.

Элементы функционального ряда являются непрерывными функциями для R, значит, и на отрезке .

Кроме того, по признаку Вейерштрасса заданный функциональный ряд равномерно и абсолютно сходится на R, а, значит, и на отрезке . Действительно, так как:

а) для R, N;

б) при R;

в) - числовой положительный сходящийся ряд (сумма убывающей геометрической прогрессии с ).

Значит, теорему о почленном интегрировании можно применить к функциональному ряду на отрезке .

Ряд полученный при почленном интегрировании заданного ряда, примет вид на отрезке .

Ответ: при .

Пример №40 (№119 из [10])

Определить область существования функции и исследовать ее на дифференцируемость во внутренних точках существования.

Решение

Определим область сходимости ряда . По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

если , т.е. , то заданный функциональный ряд сходится абсолютно.

При ряд примет вид . Полученный ряд сходится условно, так как удовлетворяет условиям признака Лейбница (признак сходимости числовых знакочередующихся рядов), т.е. и .

Страницы: 24 25 26 27 28 29 30 31 32

Образование, педагогика, воспитание:

Изучение социально-значимых качеств личности
В экспериментальном исследовании принимали участие дети старшего дошкольного возраста. Данное исследования я начала проводить в 2009–10 уч. году. В течение первого года работы с это группой детей мы совместно с воспитателем осуществляли подборку сюжетно-ролевых игр, которые, на наш взгляд, подходил ...

Цели профессионального образования
Цели профессионального образования выполняют системообразующую функцию в педагогической деятельности. Именно от выбора целей в наибольшей степени зависит выбор содержания, методов и средств обучения и воспитания. Виды педагогических целей многообразны. Можно выделить нормативные государственные цел ...

Социально-воспитательное направление работы социального педагога школы
В МОУ "Лянторская средняя общеобразовательная школа №5" в системе ведется работа с детьми девиантного поведения. Основные задачи образовательного учреждения: Дать каждому ребенку, с учетом его психофизических возможностей, тот уровень образования и воспитания, который поможет ему не потер ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru