Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке .
Кроме того, члены заданного функционального ряда являются непрерывными функциями R.
Найдем производную общего члена заданного функционального ряда: . Исследуем функциональный ряд
на абсолютную и равномерную сходимость. Для
можно найти такое
, что
. По признаку Даламбера сходимости числовых рядов имеем:
, так как
, то числовой ряд сходится абсолютно.
Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд сходится равномерно и абсолютно при
.
Следовательно, заданный функциональный ряд можно почленно продифференцировать.
Продифференцируем почленно заданный функциональный ряд и получим такой функциональный ряд:
.
Полученный ряд при представляет собой сумму убывающей геометрической прогрессии с
.
Тогда и
при
.
Итак, сумма ряда при
, т.е.
.
Функциональный ряд равномерно и абсолютно сходится при
, и функция
непрерывна при
. Значит, ряд
можно почленно интегрировать. Проинтегрировав в пределах от
до
, находим
при
.
Ответ: при
.
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: Практическое занятие №14 из [9].
Ниже приведены решенные номера домашнего задания:
Пример №36 (№95 из [10]).
Можно ли к ряду
Образование, педагогика, воспитание:
Дискуссионные методы преподавания происхождения сущности государства и
права в современной школе
Большую роль в правовом образовании играют дискуссионные методы. Целесообразно их использовать при обучении праву в старших классах. Дискуссия позволяет развивать самостоятельность школьников, которые высказывают свою точку зрения на проблему. Для проведения дискуссии необходимо сформулировать опре ...
Влияние игры на формирование элементов учебной деятельности и интеллектуальной подготовки детей
Подготовка к школе органично входит в жизнь ребенка, если взрослые учитывают психологическую специфику дошкольного возраста, не забывая о ведущей роли игры в этом периоде развития личности. Академик А.В.Запорожец писал, что оптимальные педагогические условия для реализации потенциальных возможносте ...
Учреждения социального обслуживания, профилактики и
реабилитации семьи и детей
В нашей стране в 1992 г. правительство принимает постановление "О первоочередных мерах по созданию государственной системы социальной помощи семье", которая включает экономическую, правовую, медицинскую, психологическую и педагогическую помощь. Социальная политика проявилась в выплате пос ...