Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке
.
Кроме того, члены заданного функционального ряда являются непрерывными функциями
R.
Найдем производную общего члена заданного функционального ряда:
. Исследуем функциональный ряд
на абсолютную и равномерную сходимость. Для
можно найти такое
, что
. По признаку Даламбера сходимости числовых рядов имеем:
, так как
, то числовой ряд сходится абсолютно.
Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд
сходится равномерно и абсолютно при
.
Следовательно, заданный функциональный ряд можно почленно продифференцировать.
Продифференцируем почленно заданный функциональный ряд
и получим такой функциональный ряд:
.
Полученный ряд при
представляет собой сумму убывающей геометрической прогрессии с
.
Тогда
и
при
.
Итак, сумма ряда
при
, т.е.
.
Функциональный ряд
равномерно и абсолютно сходится при
, и функция
непрерывна при
. Значит, ряд
можно почленно интегрировать. Проинтегрировав в пределах от
до
, находим
при
.
Ответ:
при
.
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: Практическое занятие №14 из [9].
Ниже приведены решенные номера домашнего задания:
Пример №36 (№95 из [10]).
Можно ли к ряду
Образование, педагогика, воспитание:
Понятие личностно-ориентированного обучения
Личностно-ориентированное обучение (ЛОО) – это такое обучение, которое во главу угла ставит самобытность ребенка, его самоценность, субъективность процесса учения. В педагогических работах, посвящённых вопросам такого рода обучения, оно обычно противопоставляется традиционному, ориентированному на ...
Повышение квалификации
Вид профессионального обучения работников, имеющий целью повышение уровня их теоретических знаний, совершенствование практических навыков и умений. Повышение квалификации рабочих — это обучение, направленное на последовательное совершенствование их профессиональных и экономических знаний, умений и ...
Характеристика теоретических подходов к функциям семьи в современном
социуме
Семья – необходимая составляющая социальной структуры цивилизованного общества, исторически изменяющееся явление, функционирующая как институт воспроизводства человека и его воспитания. Семья является тем социально-культурным образованием, где индивид получает первый опыт организации жизнедеятельно ...