Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке
.
Кроме того, члены заданного функционального ряда являются непрерывными функциями
R.
Найдем производную общего члена заданного функционального ряда:
. Исследуем функциональный ряд
на абсолютную и равномерную сходимость. Для
можно найти такое
, что
. По признаку Даламбера сходимости числовых рядов имеем:
, так как
, то числовой ряд сходится абсолютно.
Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд
сходится равномерно и абсолютно при
.
Следовательно, заданный функциональный ряд можно почленно продифференцировать.
Продифференцируем почленно заданный функциональный ряд
и получим такой функциональный ряд:
.
Полученный ряд при
представляет собой сумму убывающей геометрической прогрессии с
.
Тогда
и
при
.
Итак, сумма ряда
при
, т.е.
.
Функциональный ряд
равномерно и абсолютно сходится при
, и функция
непрерывна при
. Значит, ряд
можно почленно интегрировать. Проинтегрировав в пределах от
до
, находим
при
.
Ответ:
при
.
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: Практическое занятие №14 из [9].
Ниже приведены решенные номера домашнего задания:
Пример №36 (№95 из [10]).
Можно ли к ряду
Образование, педагогика, воспитание:
Функции наглядности в учебнике математики. Методы
работы с учебником
Не все виды наглядностей, применяемых иллюстраций имеют одинаковое значение для раскрытия изучаемых закономерностей. На процесс решения математической задачи существенное влияние оказывает схема и предметно-аналитическая картинка, в которой отражены количественные отношения искомого и данного. Выде ...
Функции, методы и формы социальной работы в школе
В условиях школы применяются различные смежные подходы, имеющие границы и зоны воздействия, в которых проявляются те или иные воздействия социальной работы. При этом всегда следует учитывать аспекты, где социальная работа должна ослабить свои позиции в пользу других служб. Социальная служба в школе ...
Принцип юридической точности правовых знаний
Особенность преподавания права состоит в том, что при объяснении правовой информации учитель пользуется конструкциями и формулами закона, сложными для восприятия учеников, у которых абстрактное мышление еще недостаточно развито. Тем не менее, недопустимо изучение отраслевого права заменять общими р ...