Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке
.
Кроме того, члены заданного функционального ряда являются непрерывными функциями
R.
Найдем производную общего члена заданного функционального ряда:
. Исследуем функциональный ряд
на абсолютную и равномерную сходимость. Для
можно найти такое
, что
. По признаку Даламбера сходимости числовых рядов имеем:
, так как
, то числовой ряд сходится абсолютно.
Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд
сходится равномерно и абсолютно при
.
Следовательно, заданный функциональный ряд можно почленно продифференцировать.
Продифференцируем почленно заданный функциональный ряд
и получим такой функциональный ряд:
.
Полученный ряд при
представляет собой сумму убывающей геометрической прогрессии с
.
Тогда
и
при
.
Итак, сумма ряда
при
, т.е.
.
Функциональный ряд
равномерно и абсолютно сходится при
, и функция
непрерывна при
. Значит, ряд
можно почленно интегрировать. Проинтегрировав в пределах от
до
, находим
при
.
Ответ:
при
.
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: Практическое занятие №14 из [9].
Ниже приведены решенные номера домашнего задания:
Пример №36 (№95 из [10]).
Можно ли к ряду
Образование, педагогика, воспитание:
Деятельностный подход к речевому процессу в теории А.А. Леонтьева
Явление «речь» в теории А.А. Леонтьева трактуется в зависимости от условий ее осуществления: в обучении иностранному языку – это самостоятельный вид речевой деятельности, обладающий всеми характеристиками деятельности в терминах А.Н. Леонтьева. В коммуникативном и познавательном видах деятельности ...
Игровые технологии
В теории и практике работы школ сегодня существует множество вариантов учебно-воспитательного процесса. Каждый автор и исполнитель привносит в педагогический процесс что-то свое, индивидуальное, в связи, с чем говорят, что каждая конкретная технология является авторской. С этим мнением можно соглас ...
Классификация дидактических игр
По характеру познавательной деятельности дидактические игры можно отнести к следующим группам: – игры, требующие от детей исполнительной деятельности. С помощью этих игр дети выполняют действия по образцу. – игры, требующие воспроизведения действия. Они направлены на формирование вычислительных нав ...