Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке
.
Кроме того, члены заданного функционального ряда являются непрерывными функциями
R.
Найдем производную общего члена заданного функционального ряда:
. Исследуем функциональный ряд
на абсолютную и равномерную сходимость. Для
можно найти такое
, что
. По признаку Даламбера сходимости числовых рядов имеем:
, так как
, то числовой ряд сходится абсолютно.
Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд
сходится равномерно и абсолютно при
.
Следовательно, заданный функциональный ряд можно почленно продифференцировать.
Продифференцируем почленно заданный функциональный ряд
и получим такой функциональный ряд:
.
Полученный ряд при
представляет собой сумму убывающей геометрической прогрессии с
.
Тогда
и
при
.
Итак, сумма ряда
при
, т.е.
.
Функциональный ряд
равномерно и абсолютно сходится при
, и функция
непрерывна при
. Значит, ряд
можно почленно интегрировать. Проинтегрировав в пределах от
до
, находим
при
.
Ответ:
при
.
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: Практическое занятие №14 из [9].
Ниже приведены решенные номера домашнего задания:
Пример №36 (№95 из [10]).
Можно ли к ряду
Образование, педагогика, воспитание:
Игры, развивающие внимание и слуховое восприятие
С самого рождения ребенка окружает множество звуков: шум ветра и дождя, шелест листьев, лай собак, сигналы машин, музыка, речь людей и т.д. Но все эти слуховые впечатления воспринимаются малышом неосознанно, сливаясь с другими, боле важными для него сигналами. Ребенок пока еще не умеет управлять св ...
Параметры, позволяющие диагностировать развитие креативности в процессе
музыкального школьного образования
Креативность является научно установившейся категорией в психологической науке. Основная задача психологии творчества состоит в раскрытии психических закономерностей и механизмов творческого процесса и креативности (творческости). Творчество рассматривается как основа и механизм развития психики. ( ...
Учебный комплект по русскому языку авторов Р.Н. Бунеева, Е.В. Бунеевой,
О.В. Прониной
Начиная с 1997 года, в практику школьного преподавания русского языка в начальных классах вошел учебный комплекс авторов Р.Н. Бунеева, Е.В. Бунеевой, О.В. Прониной. В "Пояснительной записке" программы определена основная цель курса - " развитие личности ребенка на основе формирования ...