Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 26

Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке .

Кроме того, члены заданного функционального ряда являются непрерывными функциями R.

Найдем производную общего члена заданного функционального ряда: . Исследуем функциональный ряд на абсолютную и равномерную сходимость. Для можно найти такое , что . По признаку Даламбера сходимости числовых рядов имеем: , так как , то числовой ряд сходится абсолютно.

Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд сходится равномерно и абсолютно при .

Следовательно, заданный функциональный ряд можно почленно продифференцировать.

Продифференцируем почленно заданный функциональный ряд и получим такой функциональный ряд:

.

Полученный ряд при представляет собой сумму убывающей геометрической прогрессии с .

Тогда и при .

Итак, сумма ряда при , т.е. .

Функциональный ряд равномерно и абсолютно сходится при , и функция непрерывна при . Значит, ряд можно почленно интегрировать. Проинтегрировав в пределах от до , находим

при .

Ответ: при .

В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.

Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.

Домашнее задание: Практическое занятие №14 из [9].

Ниже приведены решенные номера домашнего задания:

Пример №36 (№95 из [10]).

Можно ли к ряду

Страницы: 21 22 23 24 25 26 27 28 29 30 31

Образование, педагогика, воспитание:

Игры, развивающие внимание и слуховое восприятие
С самого рождения ребенка окружает множество звуков: шум ветра и дождя, шелест листьев, лай собак, сигналы машин, музыка, речь людей и т.д. Но все эти слуховые впечатления воспринимаются малышом неосознанно, сливаясь с другими, боле важными для него сигналами. Ребенок пока еще не умеет управлять св ...

Параметры, позволяющие диагностировать развитие креативности в процессе музыкального школьного образования
Креативность является научно установившейся категорией в психологической науке. Основная задача психологии творчества состоит в раскрытии психических закономерностей и механизмов творческого процесса и креативности (творческости). Творчество рассматривается как основа и механизм развития психики. ( ...

Учебный комплект по русскому языку авторов Р.Н. Бунеева, Е.В. Бунеевой, О.В. Прониной
Начиная с 1997 года, в практику школьного преподавания русского языка в начальных классах вошел учебный комплекс авторов Р.Н. Бунеева, Е.В. Бунеевой, О.В. Прониной. В "Пояснительной записке" программы определена основная цель курса - " развитие личности ребенка на основе формирования ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru