Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке
.
Кроме того, члены заданного функционального ряда являются непрерывными функциями
R.
Найдем производную общего члена заданного функционального ряда:
. Исследуем функциональный ряд
на абсолютную и равномерную сходимость. Для
можно найти такое
, что
. По признаку Даламбера сходимости числовых рядов имеем:
, так как
, то числовой ряд сходится абсолютно.
Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд
сходится равномерно и абсолютно при
.
Следовательно, заданный функциональный ряд можно почленно продифференцировать.
Продифференцируем почленно заданный функциональный ряд
и получим такой функциональный ряд:
.
Полученный ряд при
представляет собой сумму убывающей геометрической прогрессии с
.
Тогда
и
при
.
Итак, сумма ряда
при
, т.е.
.
Функциональный ряд
равномерно и абсолютно сходится при
, и функция
непрерывна при
. Значит, ряд
можно почленно интегрировать. Проинтегрировав в пределах от
до
, находим
при
.
Ответ:
при
.
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: Практическое занятие №14 из [9].
Ниже приведены решенные номера домашнего задания:
Пример №36 (№95 из [10]).
Можно ли к ряду
Образование, педагогика, воспитание:
Передача состояния времен года в картинах художников
Пейзаж завоевал место одного из ведущих жанров живописи. Его язык стал, подобно поэзии, способом проявления высоких эстетических чувств художника, областью искусства, в которой выражаются глубокие и серьезные истины о жизни и судьбах человечества. Вглядываясь в произведения пейзажной живописи, прис ...
Повышение компетентности педагогов в области интегрированного обучения детей с особыми образовательными потребностями в массовой школе
В Концепции модернизации российского образования на период до 2010 г. отмечается: «дети с ограниченными возможностями здоровья должны обеспечиваться медико-социальным сопровождением и специальными условиями для обучения в общеобразовательном ДОУ и школе по месту жительства». По статистическим данны ...
Развитие творческих способностей учащихся средствами графики
Художественное образование в целом и занятия графикой в частности призвано развивать эстетический и познавательный потенциал личности, стимулировать формирование эстетического сознания как основы культуры личности и основы эстетической деятельности, помогает подросткам самостоятельно освоить культу ...