Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке .
Кроме того, члены заданного функционального ряда являются непрерывными функциями R.
Найдем производную общего члена заданного функционального ряда: . Исследуем функциональный ряд
на абсолютную и равномерную сходимость. Для
можно найти такое
, что
. По признаку Даламбера сходимости числовых рядов имеем:
, так как
, то числовой ряд сходится абсолютно.
Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд сходится равномерно и абсолютно при
.
Следовательно, заданный функциональный ряд можно почленно продифференцировать.
Продифференцируем почленно заданный функциональный ряд и получим такой функциональный ряд:
.
Полученный ряд при представляет собой сумму убывающей геометрической прогрессии с
.
Тогда и
при
.
Итак, сумма ряда при
, т.е.
.
Функциональный ряд равномерно и абсолютно сходится при
, и функция
непрерывна при
. Значит, ряд
можно почленно интегрировать. Проинтегрировав в пределах от
до
, находим
при
.
Ответ: при
.
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: Практическое занятие №14 из [9].
Ниже приведены решенные номера домашнего задания:
Пример №36 (№95 из [10]).
Можно ли к ряду
Образование, педагогика, воспитание:
Опытно-экспериментальная работы по проверке эффективности условий
воспитания детей в национальных традициях
Цель: Формирование и развитие личности ребенка на национальной основе. Разные виды деятельности предусматривают освоение каждым дошкольником духовного наследия предыдущих поколений. Задачи: 1. Разработаны диагностику и диагностический инструментарий по изучению уровня освоения культурных традиций. ...
Младший школьник как субъект учебной деятельности
Школьный возраст, как и все возрасты открывается критическим периодом, который был описан в литературе раньше остальных как кризис семи лет. Давно замечено, что ребенок при переходе от дошкольного к школьному возрасту очень резко меняется и становится более трудным в воспитательном отношении, чем п ...
Особенности формирования экологических представлений у детей раннего
возраста
Учитывая психологические особенности детей раннего возраста и то, что дети только начали посещать детский сад, основным содержанием первого года обучения должны быть наблюдения и практические действия с объектами природы совместно с педагогом. О чем должен помнить педагог.У детей раннего возраста н ...