Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 26

Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке .

Кроме того, члены заданного функционального ряда являются непрерывными функциями R.

Найдем производную общего члена заданного функционального ряда: . Исследуем функциональный ряд на абсолютную и равномерную сходимость. Для можно найти такое , что . По признаку Даламбера сходимости числовых рядов имеем: , так как , то числовой ряд сходится абсолютно.

Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд сходится равномерно и абсолютно при .

Следовательно, заданный функциональный ряд можно почленно продифференцировать.

Продифференцируем почленно заданный функциональный ряд и получим такой функциональный ряд:

.

Полученный ряд при представляет собой сумму убывающей геометрической прогрессии с .

Тогда и при .

Итак, сумма ряда при , т.е. .

Функциональный ряд равномерно и абсолютно сходится при , и функция непрерывна при . Значит, ряд можно почленно интегрировать. Проинтегрировав в пределах от до , находим

при .

Ответ: при .

В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.

Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.

Домашнее задание: Практическое занятие №14 из [9].

Ниже приведены решенные номера домашнего задания:

Пример №36 (№95 из [10]).

Можно ли к ряду

Страницы: 21 22 23 24 25 26 27 28 29 30 31

Образование, педагогика, воспитание:

Музыкальное образование как важный компонент развития школьника
Разные виды искусства обладают специфическими средствами воздействия на человека. Музыка же имеет возможность воздействовать на ребенка на самых ранних этапах. Доказано, что даже внутриутробный период чрезвычайно важен для последующего развития человека: музыка, которую слушает мать, оказывает влия ...

Методика применения дидактических игр на уроках математики в первом классе
Для младшего школьного возраста учение – новое и непривычное дело. Поэтому при знакомстве со школьной жизнью игра способствует снятию барьера между «внешним миром знания» и психикой ребёнка. Игровое действие позволяет осваивать то, что заранее вызывает у младшего школьника страх неизвестности, пост ...

Структура педагогической деятельности
Прежде, чем приступить к рассмотрению сущности педагогических инноваций, методов их выявления и изучения, необходимо проанализировать структуру педагогической деятельности и определить, какое место занимает в ней инновационная деятельность учителя. Современные исследования Н.В. Кузьмина, В.А. Сласт ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru