Вопрос 2: Как звучит теорема об интегрировании функциональной последовательности? Сформулируйте условие интегрируемости функционального ряда.
Ответ: Теорема 2. Если последовательность функций , непрерывных на
, сходится равномерно на указанном отрезке к функции
, то для
последовательность определенных интегралов с переменным верхним пределом
будет сходиться равномерно на
к определенному интегралу
, причем будет справедлива формула:
.
Следствие. Пусть функции ,
N непрерывны на
и функциональный ряд
равномерно сходится на указанном отрезке. Тогда для
функциональный ряд вида
будет равномерно сходиться на отрезке
к
или к
, т.е. функциональный ряд можно почленно интегрировать:
.
Вопрос 3: Как звучат теорема о почленном дифференцировании функциональных последовательностей и рядов?
Ответ: Теорема 4. Пусть последовательность функций , непрерывно дифференцируемых на
, и последовательность их производных
равномерно сходятся на указанном отрезке. Тогда предел
последовательности непрерывно диффепенцируемых функций
непрерывно дифференцируем на указанном отрезке и верно равенство:
или
.
Следствие. Пусть функции непрерывно дифференцируемы на
и функциональные ряды:
равномерно сходятся на
. Тогда сумма функционального ряда
непрерывно дифференцируема на указанном отрезке и верно равенство:
=
.
Преподаватель: Итак, а теперь приступим непосредственно к выполнению упражнений.
При объяснении нового материала, на экран телевизора выводится задание с подробным решением, преподаватель комментирует решение, студенты записывают в тетради.
При объяснении материала следует обратиться к технологической карте по теме "Функциональные последовательности и ряды" [16], в которой отмечены затруднения при изучении данной темы, а также типичные ошибки, допускаемые студентами.
Образование, педагогика, воспитание:
Типология элективных курсов по математике
Выполненный нами в ходе исследования анализ педагогической, методической литературы показал, что существует несколько типологий элективных курсов: I. По разрешаемым задачам: Элективные курсы выполняют ряд задач: 1. Создать условия для того, чтобы ученик утвердился или отказался от сделанного им выб ...
Методика чтения сказок в коррекционной школе
Сказка — наиболее любимый для всех детей жанр. Занимательность сюжета, последовательность его развития, четкость и определенность характеров персонажей, постоянные повторы слов и выражений облегчают понимание содержания сказки даже учащимися специальной школы. В сказке заложена огромная воспитатель ...
Технология организации развивающих видов деятельности учащихся
Универсальным исходным методом и основой технологии организации развивающих видов деятельности является педагогическое требование. Педагогическое требование является действенным средством в руках педагога только в том случае, если отвечает условиям педагогической целесообразности: соответствия тем ...