Остаток исследуемого функционального ряда будет не больше остатка числового положительного ряда, т.е.
.
Найдем теперь, при каком значении будет выполняться неравенство
.
Для этого необходимо решить неравенство ,
,
.
Ответ: При .
В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.
Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональный ряд на равномерную сходимость с помощью определения равномерной сходимости и признака Вейерштрасса. Для окончательного закрепления на дом будут заданы аналогичные примеры.
Домашнее задание: практическое занятие №13 из [9].
Ниже приведены решенные номера домашнего задания.
Пример №23 (№54 из [10]).
Показать, что ряд сходится неравномерно в интервале
.
Решение.
В указанном интервале ряд сходится как бесконечно убывающая геометрическая прогрессия. Имеем т.е.
.
Но ,
. Следовательно, приняв
, невозможно добиться выполнения неравенства
при
. Итак, ряд
сходится неравномерно на интервале
.
Ответ: Доказана неравномерная сходимость на интервале .
Пример №24 (№63 из [10]).
Исследовать на равномерную сходимость на промежутке
.
Решение
Так как N,
R, то в качестве мажорантного ряда выберем
- числовой положительный ряд. Он сходится, так как это ряд Дирихле с
. Тогда, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд
сходится равномерно и абсолютно на промежутке
, так как выполняется неравенство
при
.
Ответ: Заданный ряд сходится абсолютно и равномерно на интервале .
Пример №25 (№ 66 из [10]).
Исследовать на равномерную сходимость на промежутке
.
Образование, педагогика, воспитание:
Пути и способы объяснения грамматики
Овладение грамматическими средствами должно достигать уровня навыка и проявляться в речи на уровне вторичного творческого уровня. Процесс объяснения соответствует первому этапу формирования грамматических навыков и умений — этапу создания ориентировочной основы действия. Основу для создания системы ...
Характеристика задач музыкального образования и проблема оценки результатов
Основными задачами музыкального воспитания являются следующие (Радынова О.П.): развивать музыкальные и творческие способности детей с учетом возможностей каждого ребенка с помощью различных видов музыкальной деятельности; сформировать начала музыкальной культуры, способствовать формированию общей д ...
Кинолекторий, как просмотр и обсуждение
Интерес школьников к кино очень велик. Что привлекает их в кинофильмах? Сказочные сюжеты в младшем школьном возрасте, героико-романтические и приключенческие – в подростковом, острые моральные проблемы – в юношеском возрасте. К сожалению, у большинства воспитанников всех возрастных групп преобладае ...