Пример №29 (№86 из [10]).
Показать, что ряд сходится равномерно на интервале
.
Решение
Так как при любом
R и ряд
- сходящийся числовой положительный ряд - ряд Дирихле с
, то ряд
по признаку Вейерштрасса, сходится абсолютно и равномерно на интервале
.
Ответ: Заданный ряд сходится абсолютно и равномерно при .
Практическое занятие №3
Тема: "Интегрирование и дифференцирование функциональных
последовательностей и рядов"
Тип занятия: практикум решения задач.
Форма занятия: комбинированная между коллективной и фронтальной.
Средства обучения на занятии: сборник задач, методические рекомендации к практическим занятиям, телевизор, подключенный к компьютеру, графопроектор, доска, мел.
Цель: закрепление знаний полученных на лекции, применение их на практике.
Методы: словесные, наглядные, по дидактической цели - познавательные, по характеру познавательной деятельности - проблемные.
Ход занятия:
Организационная часть: Студентам сообщается тема практического занятия, его цель, проверка присутствующих (3 минуты).
2. Основная часть: Проверка домашнего задания (12 минут). Фронтальный опрос по изученной теме (10 минут). Ознакомление с новым материалом, первичное закрепление и осмысление (60 минут). Подведение итогов и постановка домашнего задания. (5 минут).
Конспект занятия
Преподаватель: Тема занятия: "Интегрирование и дифференцирование функциональных последовательностей и рядов". Цель - приобрести навыки решения задач по вышеуказанной теме. Но прежде, проведем самостоятельную работу, которая позволит определить, насколько успешно вы справились с домашним заданием.
Проводится самостоятельная работа по домашнему заданию на 15 минут. В самостоятельной работе предлагается 3 варианта, в каждом варианте по 2 задания. Например, Вариант №1: №№ 23, 26; Вариант №2: №№ 24, 27, Вариант №2: №№ 21,28. Преподаватель самостоятельно определяет какие задания и в какой последовательности будут содержать каждый из вариантов. Во время проведения самостоятельной работы у доски работают студенты, которым предлагаются наиболее сложные на взгляд преподавателя примеры. Например, №№ 29, 25. По завершении самостоятельной работы эти примеры проверяются аудиторией.
Преподаватель: А теперь давайте вспомним определения и формули-ровки теорем по теме "Интегрирование и дифференцирование функциональных последовательностей и рядов", необходимые нам сегодня для решения упражнений.
Проводится фронтальный опрос с целью проверки теоретических знаний по изучаемой теме. Студентам предлагается отвечать на следующие вопросы у доски, выполняя необходимые при ответе записи. К доске вызываются сразу 3-4 студента.
Вопрос 1:. Сформулируйте теорему о непрерывности суммы функционального ряда в точке.
Ответ: Теорема 1. Если функции непрерывны в точке
, и функциональный ряд
равномерно сходится на множестве
, то его сумма
также непрерывна в точке
.
Образование, педагогика, воспитание:
Описание пробного обучения и его результатов
Изложенные выше теоретические положения мы апробировали на практике в сентябре – октябре 2008 – 2009 учебного года в 4 «А» классе в реальных условиях учебного процесса в средней школе №133 г. Самары. Это означает, что нами было проведено пробное обучение. Уроки проходили в соответствии с расписание ...
Роль фонематического восприятия в развитии речи
Поступление ребёнка в школу – важный этап в жизни, который меняет социальную ситуацию его развития. К обучению в 1-ом классе ребёнка необходимо готовить. Важно, чтобы дети 7-летнего возраста владели, прежде всего, грамотной фразой, развёрнутой речью, объёмом знаний, умений, навыков, определённых пр ...
Принцип научности и доступности правового образования
Принцип научности предполагает соответствие учебного материала новейшим достижениям юридической науки; приоритет научных знаний: не идеология определяет отбор знаний, а научные знания позволяют делать идеологические выводы. Понимание данной позиции важно в силу того, что право имеет политическую пр ...