Вопрос 4: Сформулировать достаточный признак равномерной сходимости функционального ряда - признак Вейерштрасса.
Ответ: Теорема. Пусть даны два ряда: функциональный , элементами которого являются функции , определенные на множестве, и числовой положительный сходящийся ряд . Тогда, если для всех выполняется неравенство , то функциональный ряд равномерно и абсолютно сходится на множестве .
Преподаватель: А теперь рассмотрим задание на исследование равномерной сходимости функционального ряда.
Пример №16 (№349 из [7], c комментариями преподавателя).
Показать, что ряд
сходится равномерно при всех действительных значениях .
Решение
Данный ряд при любом значении сходится по признаку Лейбница, поэтому его остаток оценивается с помощью неравенства , т.е.
.
Так как неравенства и равносильны, то, взяв , где - какое-нибудь целое положительное число, которое удовлетворяет условию , приходим к неравенству . Итак, данный ряд сходится рав-номерно в промежутке при всех .
Ответ: Доказана равномерная сходимость для R.
Пример №17 (№51 из [10], студент у доски с помощью преподавателя).
Исследовать на равномерную сходимость ряд
на любом конечном интервале.
Решение
Докажем, что каково бы ни было число , данный ряд сходится равномерно и абсолютно в круге радиусом , т.е. .
Заданный ряд сходится при любом значении , в частности, при , получаем числовой ряд: .
Исследуем его на абсолютную сходимость, применив признак Даламбера . Так как , то ряд сходится, причем абсолютно.
Возьмем этот ряд в качестве мажорантного, по признаку Вейерштрасса равномерной сходимости функционального ряда при .
Образование, педагогика, воспитание:
Учебные кинофильмы на уроках
Учебное кино – самое популярное из всех технических средств обучения, применяемое в рамках видеометода. Учебное кино можно с успехом включать в урок в тех случаях, когда необходимо: показать (или смоделировать) явления и процессы (реже предметы), увидеть которые невозможно вообще или без особой тех ...
Организация работы по взаимодействию с родителями
Проблему воспитания, развития и формирования здорового ребенка невозможно решить в полной мере без активного участия в этом родителей. Поэтому до сведения всех специалистов ДОУ доводятся особенности содержания работы с родителями по оздоровлению, развитию и воспитанию детей в учреждении (в зависимо ...
Примеры игр со шнурками
Использование игры-шнуровки, для того чтобы в легкой, творческой, игровой форме дать малышу необходимый сензитивный опыт. Но на первый взгляд игрушка-шнуровка не выглядит достаточно яркой и привлекательной. Возникают сомнения, заинтересует ли она малыша? Как сделать так, чтобы ему понравилось новое ...