Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 14

Можно провести письменную самостоятельную работу по домашнему заданию на 15 минут. В самостоятельной работе предлагается 2 варианта, в каждом варианте по 3 задания. Например, Вариант №1: №№ 2, 11, 14; Вариант№2: №№ 3, 12, 15. Преподаватель самостоятельно определяет какие задания и в какой последовательности будут содержать каждый из вариантов. Во время проведения самостоятельной работы у доски работают студенты, которым предлагаются наиболее сложные на взгляд преподавателя примеры. Например, №№ 13,10. По завершении самостоятельной работы эти примеры проверяются аудиторией.

Преподаватель: А теперь давайте вспомним определения и формулировки теорем по теме "Равномерная сходимость функциональных последовательностей и рядов", необходимые нам сегодня для выполнения упражнений.

Проводится фронтальный опрос с целью проверки теоретических знаний по изучаемой теме. Студентам предлагается отвечать на следующие вопросы у доски, выполняя необходимые при ответе записи. К доске вызываются сразу 3-4 студента.

Вопрос 1: Какая последовательность называется равномерно сходящейся?

Ответ: Определение №1. Функциональная последовательность называется равномерно сходящейся на множестве , если существует функция , в которой она равномерно сходится на множестве . Обозначение:

[14].

Вопрос 2: Какой функциональный ряд называется равномерно сходящимся? Сформулировать определение такого ряда, используя понятие последовательности его частичных сумм.

Ответ: Определение №2. Если последовательность частичных сумм функционального ряда равномерно сходится к функции на множестве , то ряд равномерно сходится на множестве [21].

Вопрос 3: Дать определение равномерно сходящегося функционального ряда, используя понятие остатка функционального ряда.

Ответ: Определение №3. Представим сумму функционального ряда в виде: , где [-остаток функционального ряда].

Определение №4. Сходящийся функциональный ряд называется равномерно сходящимся в некоторой области , если для каждого сколь угодно малого числа найдется такое положительное число , что при выполняется неравенство для любого из области . При этом сумма равномерно сходящегося ряда в области , где (n=1,2,3…) - непрерывные функции в области , есть непрерывная функция.

Страницы: 9 10 11 12 13 14 15 16 17 18 19

Образование, педагогика, воспитание:

Подготовка к обучению грамоте
Известный советский психолог Л.С.Выгодский считал, что обучение должно идти впереди развития и вести его за собой, опираясь на «зону ближайшего развития». Это утверждения тесно связано с теоретическим понятием о том, что ребенок обладает особой чувствительностью к определенному роду внешним воздейс ...

Изучение особенностей развития некоторых сторон позновательной деятельности детей с недостатками слуха дошкольного и младшего школьного возраста
Теоретические положения Л. С. Выготского о сложной структуре аномального развития ребенка, разграничении первичных и вторичных нарушений в психическом развитии способствовали нового подхода к рассмотрению особенностей позновательной деятельности детей с недостатками слуха ( Р.М.Боскис, Т.А.Власова, ...

Упражнения на развитие подвижности и гибкости рук
1. «Бодание» кулачками. Ребенок сжимает пальцы рук в кулачки, затем крепко прижимает их друг к другу, как будто два кулачка «бодаются». Повторяют упражнение несколько раз. 2. «Проверка сцепления». Ребенок сцепляет пальцы «в замок»: правый и левый кулачки чуть-чуть раскрывает и «вкладывает» друг в д ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru