Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 14

Можно провести письменную самостоятельную работу по домашнему заданию на 15 минут. В самостоятельной работе предлагается 2 варианта, в каждом варианте по 3 задания. Например, Вариант №1: №№ 2, 11, 14; Вариант№2: №№ 3, 12, 15. Преподаватель самостоятельно определяет какие задания и в какой последовательности будут содержать каждый из вариантов. Во время проведения самостоятельной работы у доски работают студенты, которым предлагаются наиболее сложные на взгляд преподавателя примеры. Например, №№ 13,10. По завершении самостоятельной работы эти примеры проверяются аудиторией.

Преподаватель: А теперь давайте вспомним определения и формулировки теорем по теме "Равномерная сходимость функциональных последовательностей и рядов", необходимые нам сегодня для выполнения упражнений.

Проводится фронтальный опрос с целью проверки теоретических знаний по изучаемой теме. Студентам предлагается отвечать на следующие вопросы у доски, выполняя необходимые при ответе записи. К доске вызываются сразу 3-4 студента.

Вопрос 1: Какая последовательность называется равномерно сходящейся?

Ответ: Определение №1. Функциональная последовательность называется равномерно сходящейся на множестве , если существует функция , в которой она равномерно сходится на множестве . Обозначение:

[14].

Вопрос 2: Какой функциональный ряд называется равномерно сходящимся? Сформулировать определение такого ряда, используя понятие последовательности его частичных сумм.

Ответ: Определение №2. Если последовательность частичных сумм функционального ряда равномерно сходится к функции на множестве , то ряд равномерно сходится на множестве [21].

Вопрос 3: Дать определение равномерно сходящегося функционального ряда, используя понятие остатка функционального ряда.

Ответ: Определение №3. Представим сумму функционального ряда в виде: , где [-остаток функционального ряда].

Определение №4. Сходящийся функциональный ряд называется равномерно сходящимся в некоторой области , если для каждого сколь угодно малого числа найдется такое положительное число , что при выполняется неравенство для любого из области . При этом сумма равномерно сходящегося ряда в области , где (n=1,2,3…) - непрерывные функции в области , есть непрерывная функция.

Страницы: 9 10 11 12 13 14 15 16 17 18 19

Образование, педагогика, воспитание:

Эффективность презентаций на уроках окружающего мира
Предмет» Окружающий мир» в начальной школе – сложный, но очень интересный и познавательный. И для того, чтобы интерес к предмету не угас, необходимо сделать урок занимательным, творческим. Здесь на помощь приходят информационно-коммуникационные технологии. Использование ИКТ на уроках окружающего ми ...

Законодательная база в области образования
В Республике Корея право на образование гарантировано Конституцией. Существует также специальный закон об образовании, а также отдельные нормативно-правовые акты. Из них наибольший интерес представляют подзаконные акты и правительственные программы в области реформирования образования. С 1991 г. в ...

Творческие игры как средство формирования коммуникативных навыков учащихся
В этом пункте рассмотрим два вида игр – это ролевые игры и драматизацию. Урок иностранного языка рассматривается как социальное явление, где классная аудитория – это определенная социальная среда, в которой учитель и учащиеся вступают в определенные социальные отношения друг с другом, где учебный п ...

Навигация по сайту

© 2024 Copyright www.ecsir.ru