Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 9

Итак, сумма функционального ряда при равна .

Ответ: При .

Пример №9 (№16 из [10], студент у доски с помощью преподавателя).

Найти сумму ряда:

.

Решение

По признаку Даламбера абсолютной сходимости функционального ряда можем записать:

.

В соответствии с признаком Даламбера, если , т.е. или , то заданный функциональный ряд сходится абсолютно.

Если , т.е. , исследуемый функциональный ряд расходится.

При получается числовой положительный ряд . Он расходится, так как не выполняется необходимое условие сходимости числового ряда, т.е. . Следовательно, исследуемый функциональный ряд в точке расходится.

При получается числовой знакочередующийся ряд вида . Он расходится, так как не удовлетворяет условиям признака Лейбница: а) ; б) . Значит, в точке функциональный ряд расходится.

Следовательно, областью сходимости заданного функционального ряда является интервал .

Найдем сумму заданного функционального ряда на его области сходимости. Если , то ряд представляет собой сумму убывающей геометрической прогрессии с . Сумма ряда на интервале будет определяться по формуле

Ответ: При .

В конце занятия подводятся итоги. Преподавателю целесообразно предложить студентам описать алгоритмы выполнения заданий каждого рассмотренного типа, особенности заданий каждого типа, их взаимосвязь. Ниже приведены алгоритмы выполнения рассмотренных заданий.

Исследование ряда на сходимость в точке

Вместо переменной в функциональный ряд подставляется ее значение.

Исследуется полученный числовой ряд на сходимость с помощью признаков сходимости числовых рядов.

Формулируется вывод о сходимости исследуемого функционального ряда в заданной точке.

Определение области сходимости функционального ряда

Определение интервала сходимости функционального ряда (ряд исследуется на всей числовой прямой).

Исследование ряда на сходимость на концах интервала сходимости (сходимость функционального ряда в точке).

Страницы: 4 5 6 7 8 9 10 11 12 13 14

Образование, педагогика, воспитание:

Типы современного урока истории
В современной педагогической науке выделяют следующие наиболее общепринятые типы уроков: уроки новых знаний; уроки анализа и синтеза знаний; уроки формирования навыков и умений; уроки диагностики знаний, навыков и умений. Рассмотрим каждый из типов занятий и входящие в них формы и виды уроков. 1. У ...

Стилевые характеристики и личностные типологические особенности
Как связаны стилевые характеристики с личностными типологическими особенностями? Говоря о формировании стиля человека, мы так или иначе имеем в виду две исходные координаты — внутреннюю индивидуальную среду как источник детерминации стилевых свойств и внешние условия, "отвечающие" не толь ...

Профессиональная квалификация педагога
Нормативы и сферы деятельности педагога в принципе неизменяемы, а вот его становление — движение от возможного к действительному, начинаясь с предпрофессионального поиска себя, затем профессионального образования и продолжаясь в ходе работы по специальности, — во всех его аспектах индивидуально, т. ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru