Итак, сумма функционального ряда при равна .
Ответ: При .
Пример №9 (№16 из [10], студент у доски с помощью преподавателя).
Найти сумму ряда:
.
Решение
По признаку Даламбера абсолютной сходимости функционального ряда можем записать:
.
В соответствии с признаком Даламбера, если , т.е. или , то заданный функциональный ряд сходится абсолютно.
Если , т.е. , исследуемый функциональный ряд расходится.
При получается числовой положительный ряд . Он расходится, так как не выполняется необходимое условие сходимости числового ряда, т.е. . Следовательно, исследуемый функциональный ряд в точке расходится.
При получается числовой знакочередующийся ряд вида . Он расходится, так как не удовлетворяет условиям признака Лейбница: а) ; б) . Значит, в точке функциональный ряд расходится.
Следовательно, областью сходимости заданного функционального ряда является интервал .
Найдем сумму заданного функционального ряда на его области сходимости. Если , то ряд представляет собой сумму убывающей геометрической прогрессии с . Сумма ряда на интервале будет определяться по формуле
Ответ: При .
В конце занятия подводятся итоги. Преподавателю целесообразно предложить студентам описать алгоритмы выполнения заданий каждого рассмотренного типа, особенности заданий каждого типа, их взаимосвязь. Ниже приведены алгоритмы выполнения рассмотренных заданий.
Исследование ряда на сходимость в точке
Вместо переменной в функциональный ряд подставляется ее значение.
Исследуется полученный числовой ряд на сходимость с помощью признаков сходимости числовых рядов.
Формулируется вывод о сходимости исследуемого функционального ряда в заданной точке.
Определение области сходимости функционального ряда
Определение интервала сходимости функционального ряда (ряд исследуется на всей числовой прямой).
Исследование ряда на сходимость на концах интервала сходимости (сходимость функционального ряда в точке).
Образование, педагогика, воспитание:
Понятие и структура межкультурной компетенции
Глобализация – это процесс возрастающего воздействия различных факторов международного значения (например, тесных экономических и политических связей, культурного и информационного обмена) на социальную действительность в отдельных странах. Суть глобализации заключается в расширении взаимосвязей и ...
Варианты решения и постановки проблемы
Существуют различные варианты постановки и решения проблемы. 1. Проблему решает педагог Педагог ставит проблему или проблемы, и сам их решает, излагая лекционный материал. При такой форме проведения занятия учащиеся внешне пассивны, но внутри каждого из них могут интенсивно протекать процессы поним ...
Подготовка к обучению грамоте
Известный советский психолог Л.С.Выгодский считал, что обучение должно идти впереди развития и вести его за собой, опираясь на «зону ближайшего развития». Это утверждения тесно связано с теоретическим понятием о том, что ребенок обладает особой чувствительностью к определенному роду внешним воздейс ...