Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 9

Итак, сумма функционального ряда при равна .

Ответ: При .

Пример №9 (№16 из [10], студент у доски с помощью преподавателя).

Найти сумму ряда:

.

Решение

По признаку Даламбера абсолютной сходимости функционального ряда можем записать:

.

В соответствии с признаком Даламбера, если , т.е. или , то заданный функциональный ряд сходится абсолютно.

Если , т.е. , исследуемый функциональный ряд расходится.

При получается числовой положительный ряд . Он расходится, так как не выполняется необходимое условие сходимости числового ряда, т.е. . Следовательно, исследуемый функциональный ряд в точке расходится.

При получается числовой знакочередующийся ряд вида . Он расходится, так как не удовлетворяет условиям признака Лейбница: а) ; б) . Значит, в точке функциональный ряд расходится.

Следовательно, областью сходимости заданного функционального ряда является интервал .

Найдем сумму заданного функционального ряда на его области сходимости. Если , то ряд представляет собой сумму убывающей геометрической прогрессии с . Сумма ряда на интервале будет определяться по формуле

Ответ: При .

В конце занятия подводятся итоги. Преподавателю целесообразно предложить студентам описать алгоритмы выполнения заданий каждого рассмотренного типа, особенности заданий каждого типа, их взаимосвязь. Ниже приведены алгоритмы выполнения рассмотренных заданий.

Исследование ряда на сходимость в точке

Вместо переменной в функциональный ряд подставляется ее значение.

Исследуется полученный числовой ряд на сходимость с помощью признаков сходимости числовых рядов.

Формулируется вывод о сходимости исследуемого функционального ряда в заданной точке.

Определение области сходимости функционального ряда

Определение интервала сходимости функционального ряда (ряд исследуется на всей числовой прямой).

Исследование ряда на сходимость на концах интервала сходимости (сходимость функционального ряда в точке).

Страницы: 4 5 6 7 8 9 10 11 12 13 14

Образование, педагогика, воспитание:

Содержание обучения английскому языку как второму иностранному
Проблема родного языка неизменно возникает всякий раз при разработке методов обучения иностранному языку. Сложность этой проблемы нашла свое отражение в таких методических принципах обучения, как опора на родной язык, его учет или исключение из учебного процесса. Все речевые механизмы учащихся сфор ...

Математика и ее потенциал в развитии младших школьников
Развитие – процесс, направленный на изменение материальных и духовных объектов с целью их усовершенствования. Изменение материи и сознания, их универсальное свойство, всеобщий принцип объяснения истории природы, общества и познания. В начальной школе именно математика является основой развития у уч ...

Дидактическая игра как основной метод воспитания сенсорной культуры детей младшего дошкольного возраста
Могучим средством воспитания детей младшего дошкольного возраста является дидактическая игра и упражнения. Недаром этот возраст называют возрастом игры. Народная мудрость создала дидактическую игру, которая является для ребенка младшего дошкольного возраста наиболее подходящей формой обучения. Игра ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru