Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 6

Если , то получается числовой положительный ряд вида . Он является расходящимся, так как , следовательно, .

Если , то элементы исходного функционального ряда меньше членов суммы бесконечно убывающей геометрической прогрессии . Для убывающей геометрической прогрессии , , при .

Значит, ряд сходится при .

Следовательно, будет сходиться при и заданный функциональный ряд, т.е. областью сходимости является объединение интервалов - .

Ответ: Область сходимости заданного функционального ряда - .

Первичное закрепление материала происходит при решении студентами у доски упражнений, подобных рассмотренным с преподавателем, к доске вызываются сразу 3-4 студента.

Пример №5 (№2 из, студент у доски с помощью преподавателя).

Найти область сходимости функционального ряда:

Решение

Определим формулу общего элемента заданного функционального ряда N.

По признаку Даламбера абсолютной сходимости функционального ряда имеем:

В соответствии с признаком Даламбера абсолютной сходимости функционального ряда, если , т.е. , то заданный функциональный ряд сходится абсолютно.

При , т.е. , исследуемый функциональный ряд расходится.

При x=3 функциональный ряд становится положительным числовым рядом вида . Этот ряд расходится, так как является гармоническим рядом .

При х=-3 функциональный ряд становится знакочередующимся числовым рядом вида: .

По признаку Лейбница: а) ; б) , так как .

Значит, ряд сходится условно по признаку Лейбница.

Составим ряд из абсолютных величин членов ряда . Получим ряд - это гармонический расходящийся ряд.

Значит, исходный функциональный ряд сходится абсолютно на интервале , а сходится условно на полуотрезке .

Страницы: 1 2 3 4 5 6 7 8 9 10 11

Образование, педагогика, воспитание:

Воспитание нравственных чувств у детей,как средство подготовки детей к обучению в школе
Воспитание нравственных чувств у детей дошкольного возраста тесно связано с формированием у них этических представлений через которые ребенок постигает ценности, без которых невозможна духовная жизнь общества и отдельного человека. Отсутствие таких представлений, незнание того, «что такое хорошо» и ...

Специфика обучения и воспитания детей с нарушениями слуха
Глухой и слабослышащий ребенок, как и слышащий, при рождении — существо, открытое миру, которому необходимо воспитание как помощь в жизни. В соответствии со своей биологической сущностью он способен к обучению и может в процессе социализации получить воспитание и образование, которые станут предпос ...

История хоккея
История хоккея с шайбой является одной из самых оспариваемых среди всех видов спорта. Традиционно местом рождения хоккея считается Монреаль. Однако ещё на некоторых голландских картинах XVI века изображено множество людей, играющих на замёрзшем канале в похожую на хоккей игру. Но, несмотря на это, ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru