Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 3

Вопрос 1: Сформулировать определение функциональной последовательности.

Ответ: Определение №1. Пусть дана последовательность функций . Причем функции являются функциями одной переменной и определены в некоторой области . Такая последовательность называется функциональной и обозначается .

Вопрос 2: Определить, что называют предельной функцией последовательности ?

Ответ: Определение №2. Функция называется предельной функцией последовательности , если выполняется утверждение .

Вопрос 3: Дать понятия функционального ряда и его области сходимости.

Ответ: Определение №3. Ряд, элементами которого являются функции одной и той же переменной , заданной в области:

называется функциональным рядом.

Определение №4. Совокупность всех значений переменной , при которых функции определены и ряд сходится, называют областью сходимости функционального ряда.

Областью сходимости функционального ряда чаще всего служит какой-нибудь промежуток оси .

Вопрос 4: Что называют суммой функционального ряда?

Ответ: Пусть дан функциональный ряд и он сходится при каждом фиксированном из, тогда сумму такого ряда представляет собой некоторую функцию переменной : . Сумма для функционального ряда определяется также как и для числового: . Здесь - частичная сумма функционального ряда n-го порядка

.

Преподаватель: Итак, а теперь приступим непосредственно к выполнению упражнений.

При объяснении нового материала, на экран телевизора выводится задание с подробным решением, преподаватель комментирует решение, студенты записывают в тетради. При объяснении материала следует обратиться к технологической карте по теме "Функциональные последовательности и ряды", в которой отмечены затруднения при изучении данной темы, а также типичные ошибки, допускаемые студентами.

Практические задания должны рассматриваться по принципу "от простого к сложному". Вначале необходимо выполнить упражнения на исследование сходимости функционального ряда в точке. Такого вида упражнения помогают студентам обнаружить взаимосвязь числового и функционального рядов, а также лучше понять "природу" функционального ряда.

Дан функциональный ряд:

,

Страницы: 1 2 3 4 5 6 7 8

Образование, педагогика, воспитание:

Учебные кинофильмы на уроках
Учебное кино – самое популярное из всех технических средств обучения, применяемое в рамках видеометода. Учебное кино можно с успехом включать в урок в тех случаях, когда необходимо: показать (или смоделировать) явления и процессы (реже предметы), увидеть которые невозможно вообще или без особой тех ...

Развитие российского законодательства в области образования
Преемственность образовательных традиций в современной российской высшей школе требует изучения истории становления российского образовательного права. Законов прямого действия в области образования, по существу, в Российской Федерации до 1992 года не было. Современное образовательное право возникл ...

Принцип научности и доступности правового образования
Принцип научности предполагает соответствие учебного материала новейшим достижениям юридической науки; приоритет научных знаний: не идеология определяет отбор знаний, а научные знания позволяют делать идеологические выводы. Понимание данной позиции важно в силу того, что право имеет политическую пр ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru