Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 8

При получим числовой положительный ряд . Это ряд Дирихле с . Известно, что если , то ряд расходится. Значит, функциональный ряд в точке расходится.

При получим числовой знакочередующийся ряд вида . Он сходится, так как удовлетворяет условиям признака Лейбница сходимости знакочередующихся числовых рядов, т.е. и : .

Ряд, составленный из абсолютных величин элементов ряда , имеет вид и является расходящимся.

Значит, функциональный ряд сходится условно в точке x=1.

Итак, область сходимости исследуемого функционального ряда . Абсолютно ряд сходится на интервале .

Ответ: .

Преподаватель: Последний вид заданий, который мы с вами сегодня рассмотрим, - на нахождение суммы функционального ряда.

Пример №8 (№14 из, с комментариями преподавателя).

Найти сумму ряда:

.

Решение

По признаку Даламбера абсолютной сходимости функционального ряда можем записать:

.

Если , т.е. то функциональный ряд сходится абсолютно на интервале .

Если , т.е. , то исследуемый функциональный ряд расходится на указанных промежутках.

При функциональный ряд становится числовым положительным расходящимся рядом , так как не выполняется необходимое условие сходимости числового ряда, т.е. .

Значит, область абсолютной сходимости функционального ряда есть интервал .

Найдем сумму заданного функционального ряда на его области сходимости.

Если , то исследуемый ряд представляет собой сумму убывающей геометрической прогрессии с . Сумму ряда будем определять по формуле:

.

При сумма ряда .

Страницы: 3 4 5 6 7 8 9 10 11 12 13

Образование, педагогика, воспитание:

Инновационные процессы в России в конце 20 – начале 21 вв
Современные инновационные процессы в российском образовании обусловлены противоречиями, обострившимися на рубеже 70–80-х годов ХХ в., когда в отечественной школе с очевидностью стали проявляться признаки кризиса и застоя. Эти признаки обнаруживались в спаде интересов школьников к учебе, в упадке шк ...

Повышение компетентности педагогов в области интегрированного обучения детей с особыми образовательными потребностями в массовой школе
В Концепции модернизации российского образования на период до 2010 г. отмечается: «дети с ограниченными возможностями здоровья должны обеспечиваться медико-социальным сопровождением и специальными условиями для обучения в общеобразовательном ДОУ и школе по месту жительства». По статистическим данны ...

Особенности речи детей младшего школьного возраста по сравнению с нормально развивающимися сверстниками
В младшем школьном возрасте у детей с легкой степени умственной отсталости отмечается недоразвитие речи, которое характеризуется нарушением всех ее сторон: смысловой, грамматической, звуковой, а также ограниченностью и бедностью словаря. Произносительная сторона речи Недоразвитие речи прежде всего ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru