При
получим числовой положительный ряд
. Это ряд Дирихле с
. Известно, что если
, то ряд
расходится. Значит, функциональный ряд
в точке
расходится.
При
получим числовой знакочередующийся ряд вида
. Он сходится, так как удовлетворяет условиям признака Лейбница сходимости знакочередующихся числовых рядов, т.е.
и
:
.
Ряд, составленный из абсолютных величин элементов ряда
, имеет вид
и является расходящимся.
Значит, функциональный ряд
сходится условно в точке x=1.
Итак, область сходимости исследуемого функционального ряда
. Абсолютно ряд сходится на интервале
.
Ответ:
.
Преподаватель: Последний вид заданий, который мы с вами сегодня рассмотрим, - на нахождение суммы функционального ряда.
Пример №8 (№14 из, с комментариями преподавателя).
Найти сумму ряда:
.
Решение
По признаку Даламбера абсолютной сходимости функционального ряда можем записать:
.
Если
, т.е.
то функциональный ряд
сходится абсолютно на интервале
.
Если
, т.е.
, то исследуемый функциональный ряд расходится на указанных промежутках.
При
функциональный ряд становится числовым положительным расходящимся рядом
, так как не выполняется необходимое условие сходимости числового ряда, т.е.
.
Значит, область абсолютной сходимости функционального ряда
есть интервал
.
Найдем сумму заданного функционального ряда на его области сходимости.
Если
, то исследуемый ряд представляет собой сумму убывающей геометрической прогрессии с
. Сумму ряда будем определять по формуле:
.
При
сумма ряда
.
Образование, педагогика, воспитание:
Педагогика игры
Одна из главных сфер воспитания детей до школы — игра. Поэтому при разработке проблем общественного дошкольного воспитания, естественно, к ряду главных относятся воспитательные возможности игры. Учитывая эти возможности, следует рассматривать игру как форму воспитания, как средство для решения опре ...
Роль словесного ударения
Данная методика и приемы работы взяты из разработок К.А. Волковой, Ф.Ф. Рау, Н.Ф. Слезиной. Словесное ударение является одним из трех элементов фонетической системы русского языка. Оно вместе с числом слогов, является носителем его ритма. Благодаря ударению осуществляется выделение слов в речи, а т ...
Содержание географических представлений
Взаимодействие человека с природой не может остаться в стороне от познания ребенком окружающего мира. Конкретные примеры использования человеком природных ресурсов, последствия этого воздействия на природу и на здоровье людей могут быть взяты на вооружение дошкольной педагогикой с целью формировани ...