При получим числовой положительный ряд
. Это ряд Дирихле с
. Известно, что если
, то ряд
расходится. Значит, функциональный ряд
в точке
расходится.
При получим числовой знакочередующийся ряд вида
. Он сходится, так как удовлетворяет условиям признака Лейбница сходимости знакочередующихся числовых рядов, т.е.
и
:
.
Ряд, составленный из абсолютных величин элементов ряда , имеет вид
и является расходящимся.
Значит, функциональный ряд сходится условно в точке x=1.
Итак, область сходимости исследуемого функционального ряда . Абсолютно ряд сходится на интервале
.
Ответ: .
Преподаватель: Последний вид заданий, который мы с вами сегодня рассмотрим, - на нахождение суммы функционального ряда.
Пример №8 (№14 из, с комментариями преподавателя).
Найти сумму ряда:
.
Решение
По признаку Даламбера абсолютной сходимости функционального ряда можем записать:
.
Если , т.е.
то функциональный ряд
сходится абсолютно на интервале
.
Если , т.е.
, то исследуемый функциональный ряд расходится на указанных промежутках.
При функциональный ряд становится числовым положительным расходящимся рядом
, так как не выполняется необходимое условие сходимости числового ряда, т.е.
.
Значит, область абсолютной сходимости функционального ряда есть интервал
.
Найдем сумму заданного функционального ряда на его области сходимости.
Если , то исследуемый ряд представляет собой сумму убывающей геометрической прогрессии с
. Сумму ряда будем определять по формуле:
.
При сумма ряда
.
Образование, педагогика, воспитание:
Инновационные процессы в России в конце 20 – начале
21 вв
Современные инновационные процессы в российском образовании обусловлены противоречиями, обострившимися на рубеже 70–80-х годов ХХ в., когда в отечественной школе с очевидностью стали проявляться признаки кризиса и застоя. Эти признаки обнаруживались в спаде интересов школьников к учебе, в упадке шк ...
Повышение компетентности педагогов в области интегрированного обучения детей с особыми образовательными потребностями в массовой школе
В Концепции модернизации российского образования на период до 2010 г. отмечается: «дети с ограниченными возможностями здоровья должны обеспечиваться медико-социальным сопровождением и специальными условиями для обучения в общеобразовательном ДОУ и школе по месту жительства». По статистическим данны ...
Особенности речи детей младшего школьного возраста по сравнению с нормально
развивающимися сверстниками
В младшем школьном возрасте у детей с легкой степени умственной отсталости отмечается недоразвитие речи, которое характеризуется нарушением всех ее сторон: смысловой, грамматической, звуковой, а также ограниченностью и бедностью словаря. Произносительная сторона речи Недоразвитие речи прежде всего ...