При получим числовой положительный ряд
. Это ряд Дирихле с
. Известно, что если
, то ряд
расходится. Значит, функциональный ряд
в точке
расходится.
При получим числовой знакочередующийся ряд вида
. Он сходится, так как удовлетворяет условиям признака Лейбница сходимости знакочередующихся числовых рядов, т.е.
и
:
.
Ряд, составленный из абсолютных величин элементов ряда , имеет вид
и является расходящимся.
Значит, функциональный ряд сходится условно в точке x=1.
Итак, область сходимости исследуемого функционального ряда . Абсолютно ряд сходится на интервале
.
Ответ: .
Преподаватель: Последний вид заданий, который мы с вами сегодня рассмотрим, - на нахождение суммы функционального ряда.
Пример №8 (№14 из, с комментариями преподавателя).
Найти сумму ряда:
.
Решение
По признаку Даламбера абсолютной сходимости функционального ряда можем записать:
.
Если , т.е.
то функциональный ряд
сходится абсолютно на интервале
.
Если , т.е.
, то исследуемый функциональный ряд расходится на указанных промежутках.
При функциональный ряд становится числовым положительным расходящимся рядом
, так как не выполняется необходимое условие сходимости числового ряда, т.е.
.
Значит, область абсолютной сходимости функционального ряда есть интервал
.
Найдем сумму заданного функционального ряда на его области сходимости.
Если , то исследуемый ряд представляет собой сумму убывающей геометрической прогрессии с
. Сумму ряда будем определять по формуле:
.
При сумма ряда
.
Образование, педагогика, воспитание:
Анализ результатов исследования особенностей звукопроизношения
На первом этапе нашего исследования мы провели исследование звукопроизношения. Анализируя полученные данные по исследованию звукопроизношения, мы выявили, что у детей экспериментальной группы нарушено звукопроизношение у всех детей (100%). Все данные о дефектах произношения мы поместили в таблицу. ...
Условия использования эвристической технологии в
образовательном процессе
Анализ психологических исследований по выявлению условий эвристической образовательной деятельности позволил установить три группы личностных качеств ученика, необходимых для её обеспечения: креативные, когнитивные и оргдеятельностные (методологические). Согласно обозначенным выше философским основ ...
Неурочные формы внеклассной работы
Спортивные соревнования являются одной из самых интересных, увлекательных форм внеклассной работы по физическому воспитанию в начальной школе. Они содействуют привлечению учащихся к систематическим занятиям физическими упражнениями дома и в коллективе физкультуры, повышают физическую подготовленнос ...