Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 12

Отсюда, - интервал сходимости заданного функционального ряда.

Определим сходимость ряда в точках и .

Если , то ряд примет вид - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. . Следовательно, заданный функциональный ряд расходится в точке .

Если , то ряд примет вид - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. . Следовательно, исследуемый функциональный ряд расходится в точке .

Значит, - область абсолютной сходимости заданного функционального ряда. Ответ: .

Пример №14 (№15 из [10]).

Найти сумму ряда

.

Решение

По признаку Даламбера абсолютной сходимости функционального ряда имеем:

.

Если , т.е. , то заданный функциональный ряд сходится абсолютно на указанном интервале.

Если , т.е. , исследуемый функциональный ряд расходится.

При функциональный ряд примет вид 1+1+1+… - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. . Следовательно, в точке исследуемый функциональный ряд расходится.

При функциональный ряд примет вид 1-1+1-1+… - числовой знакочередующийся ряд. Он расходится, так как ни одно из двух условий признака Лейбница не выполняется: а) ; б) . Значит, функциональный ряд в точке расходится. Значит, - область абсолютной сходимости заданного функционального ряда.

На области своей сходимости исследуемый ряд представляет собой сумму убывающей геометрической прогрессии. Сумму этой прогрессии найдем по формулам:

, где .

Тогда, при .

Ответ: при .

Страницы: 7 8 9 10 11 12 13 14 15 16 17

Образование, педагогика, воспитание:

Пути и способы объяснения грамматики
Овладение грамматическими средствами должно достигать уровня навыка и проявляться в речи на уровне вторичного творческого уровня. Процесс объяснения соответствует первому этапу формирования грамматических навыков и умений — этапу создания ориентировочной основы действия. Основу для создания системы ...

Инновационный процесс и его особенности
Инновационный процесс в сфере образования - это обновление и изменение концепций образования, содержания учебных программ, методов и методик, способов обучения и воспитания. Цель инновационного процесса в образовании - кардинальные изменения сложившихся традиционных элементов образовательной систем ...

Цели и задачи профильного обучения
В наше время одним из важнейших направлений модернизации системы образования в России остаётся переход к старшей профильной школе. Необходимость перехода старшей ступени на профильное обучение определена Правительством России в «Концепции модернизации российского образования на период до 2010 года» ...

Навигация по сайту

© 2026 Copyright www.ecsir.ru