Значит, заданный ряд равномерно и абсолютно сходится при .
Ответ: Доказана равномерная и абсолютная сходимость при .
Пример №18 (№89 из [10], c комментариями преподавателя).
С помощью признака Вейерштрасса показать, что ряд
сходится равномерно в промежутке .
Решение
Так как при R и числовой положительный ряд сходится, как обобщенный гармонический ряд с , то заданный функциональный ряд сходится равномерно и абсолютно при любых значениях .
Ответ: Доказана равномерная и абсолютная сходимость для R.
Пример №19 (№79 из [10], студент с помощью преподавателя).
Показать, что ряд сходится равномерно на отрезке .
Решение
Если , то . Значит, числовой положительный ряд является мажорантным. По признаку Даламбера абсолютной сходимости числовых рядов имеем: , так как , то числовой ряд сходится абсолютно.
Следовательно, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд сходится при равномерно и абсолютно.
Если , то ряд примет вид - сходится. Значит, и заданный функциональный ряд сходится равномерно.
Если , то ряд примет вид - сходится. Значит, и заданный функциональный ряд сходится равномерно.
Итак, ряд сходится равномерно и абсолютно на отрезке .
Ответ: Доказана равномерная и абсолютная сходимость на отрезке . Пример №20 (№52 из [10], студент самостоятельно у доски).
Исследовать на равномерную сходимость ряд на всей числовой оси.
Решение
Так как при N и R, то в качестве мажорантного ряда выберем - числовой положительный ряд (ряд Дирихле). Он сходится. Следовательно, и ряд по теореме Вейерштрасса равномерно и абсолютно сходится, так как при R
Образование, педагогика, воспитание:
Понятие и сущность полоролевой социализации детей среднего дошкольного
возраста
Воспитание как процесс приобщения человека к историческому опыту в содержательной и целеполагающей основе всегда определяется ведущими потребностями общества. Изменение базовых социальных ориентиров неизбежно приводит к пересмотру и переоценке задач, направлений, форм организации воспитательной раб ...
Варианты решения и постановки проблемы
Существуют различные варианты постановки и решения проблемы. 1. Проблему решает педагог Педагог ставит проблему или проблемы, и сам их решает, излагая лекционный материал. При такой форме проведения занятия учащиеся внешне пассивны, но внутри каждого из них могут интенсивно протекать процессы поним ...
Формы занятий и контроль знаний на элективных курсах по математике
Введение профильного обучения, а особенно элективных курсов, в программу старшей школы, несомненно, потребует разнообразия форм и методов обучения, так как профильное обучение – это не только дифференцирование содержания образования, но, как правило, и по-другому построенный учебный процесс. При вы ...