Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 16

Значит, заданный ряд равномерно и абсолютно сходится при .

Ответ: Доказана равномерная и абсолютная сходимость при .

Пример №18 (№89 из [10], c комментариями преподавателя).

С помощью признака Вейерштрасса показать, что ряд

сходится равномерно в промежутке .

Решение

Так как при R и числовой положительный ряд сходится, как обобщенный гармонический ряд с , то заданный функциональный ряд сходится равномерно и абсолютно при любых значениях .

Ответ: Доказана равномерная и абсолютная сходимость для R.

Пример №19 (№79 из [10], студент с помощью преподавателя).

Показать, что ряд сходится равномерно на отрезке .

Решение

Если , то . Значит, числовой положительный ряд является мажорантным. По признаку Даламбера абсолютной сходимости числовых рядов имеем: , так как , то числовой ряд сходится абсолютно.

Следовательно, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд сходится при равномерно и абсолютно.

Если , то ряд примет вид - сходится. Значит, и заданный функциональный ряд сходится равномерно.

Если , то ряд примет вид - сходится. Значит, и заданный функциональный ряд сходится равномерно.

Итак, ряд сходится равномерно и абсолютно на отрезке .

Ответ: Доказана равномерная и абсолютная сходимость на отрезке . Пример №20 (№52 из [10], студент самостоятельно у доски).

Исследовать на равномерную сходимость ряд на всей числовой оси.

Решение

Так как при N и R, то в качестве мажорантного ряда выберем - числовой положительный ряд (ряд Дирихле). Он сходится. Следовательно, и ряд по теореме Вейерштрасса равномерно и абсолютно сходится, так как при R

Страницы: 11 12 13 14 15 16 17 18 19 20 21

Образование, педагогика, воспитание:

Роль сюжетно–ролевых игр в социализации детей дошкольного возраста
В педагогической теории игры особое внимание уделяется изучению игры как средству воспитания. Игра, несомненно, довольно увлекательное занятие для ребенка, а также важнейшее средство его воспитания и развития. Основополагающим является положение о том, что в дошкольном возрасте игра представляется ...

Анализ учебно-методических пособий для проведения элективных курсов по математике
В настоящее время литературы, связанной с элективными курсами сравнительно немного, так как данные курсы вошли в жизнь школы сравнительно недавно, и многие учителя (как показал анализ анкет) не проводят их, то есть нет опыта преподавания в данной области. Мы обратились к анализу учебных пособий по ...

Историко-педагогические идеи в области национального образования
В основе национального образования лежит позитивное восприятие своего исторического прошлого, раскрытие глубинных смыслов общественного бытия через осмысление собственных национальных корней и возрождение лучших народных традиций. Именно национальное образование, представляющее собой концентрат цен ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru