исследовать его сходимость в точках и .
Решение
В точке получаем числовой положительный ряд
.
Исследуем полученный ряд на сходимость, применив признак Далам-бера сходимости положительного числового ряда:
,
так как , то числовой положительный ряд расходится. А значит, заданный функциональный ряд расходится в точке .
В точке получаем числовой положительный ряд:
.
Исследуем полученный ряд на сходимость, применив признак Даламбера сходимости положительного числового ряда:
,
так как , то числовой положительный ряд сходится. Следовательно, функциональный ряд сходится, причем абсолютно, в точке .
Ответ: Функциональный ряд сходится абсолютно при и расходится при . Пример №2 (№345 из, студент решает у доски самостоятельно). Дан функциональный ряд:
.
Исследовать его сходимость в точках , и .
Решение
При ряд примет вид - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .
При ряд примет вид - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .
При ряд примет вид . числовой положительный ряд. По признаку Даламбера сходимости числового положительного ряда имеем: , т.е. ряд сходится. Значит, исходный функциональный ряд сходится в точке абсолютно.
Ответ: Заданный функциональный ряд сходится абсолютно в точке и расходится в точках и .
Пример №3 (№1 из [10], с комментариями преподавателя).
Найти область сходимости функционального ряда:
.
Решение
I способ.
Образование, педагогика, воспитание:
Формы и методы дидактической игры
В современной дидактике существуют различные подходы и варианты классификаций методов обучения. Одной из таких классификаций является распространенная классификация методов обучения по источнику получения знаний (словесные, наглядные и практические методы). Различают общую и частную дидактики. Обща ...
Проведение исследовательского эксперимента
На примере приведенной выше работы над проектом, был проведен исследовательский эксперимент в одном из 3-их классов гимназии №9 города Красноярска. В организованной работе над проектом участвовало 17 человек. В данном учебном заведении программой предусмотрено изучение информатики в начальной школе ...
Уровни образования. Особенности организации и финансирования образования
Образовательная система Республики Кореи включает: дошкольные учреждения и детские сады, срок обучения в которых составляет от одного до трех лет; шестилетние начальные школы; трехлетние средние школы; трехлетние средние школы повышенной ступени; колледжи и университеты со сроком обучения в четыре ...