Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 4

исследовать его сходимость в точках и .

Решение

В точке получаем числовой положительный ряд

.

Исследуем полученный ряд на сходимость, применив признак Далам-бера сходимости положительного числового ряда:

,

так как , то числовой положительный ряд расходится. А значит, заданный функциональный ряд расходится в точке .

В точке получаем числовой положительный ряд:

.

Исследуем полученный ряд на сходимость, применив признак Даламбера сходимости положительного числового ряда:

,

так как , то числовой положительный ряд сходится. Следовательно, функциональный ряд сходится, причем абсолютно, в точке .

Ответ: Функциональный ряд сходится абсолютно при и расходится при . Пример №2 (№345 из, студент решает у доски самостоятельно). Дан функциональный ряд:

.

Исследовать его сходимость в точках , и .

Решение

При ряд примет вид - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

При ряд примет вид - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

При ряд примет вид . числовой положительный ряд. По признаку Даламбера сходимости числового положительного ряда имеем: , т.е. ряд сходится. Значит, исходный функциональный ряд сходится в точке абсолютно.

Ответ: Заданный функциональный ряд сходится абсолютно в точке и расходится в точках и .

Пример №3 (№1 из [10], с комментариями преподавателя).

Найти область сходимости функционального ряда:

.

Решение

I способ.

Страницы: 1 2 3 4 5 6 7 8 9

Образование, педагогика, воспитание:

Особенности саморегуляции одаренного ребенка
"Безумен тот, кто, не умея управлять собою, хочет управлять другими", - сказал Публий Сир. Здесь уместны и слова Гете: "Умен не тот, кто много знает, а тот, кто знает самого себя" Под саморегуляцией в психологии понимается способность человека произвольно управлять своей деятель ...

Психолого-педагогическое обоснование использования наглядного метода обучения
Наглядность – это свойство, выражающее степень доступности и понятности психических образов объектов познания для познающего субъекта. В процессе создания образа восприятия объекта наряду с ощущением участвуют память и мышление. Образ воспринимаемого объекта является наглядным только тогда, когда ч ...

Особенности методики организации занятий по обучению спортивным играм
Согласно примерной основной общеобразовательной программе дошкольного образования "Детство", которая полностью соответствует Федеральным государственным требованиям, образовательной области "Физическая культура" для детей старшего дошкольного возраста предусмотрены спортивные уп ...

Навигация по сайту

© 2024 Copyright www.ecsir.ru