Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 5

Найдем общий элемент заданного функционального ряда:

Исследуемый функциональный ряд представляет собой сумму убывающей геометрической прогрессии при , т.е. при , где , .

Значит, область сходимости исходного функционального ряда: .

Проверим сходимость исходного функционального ряда при и .

Если , то получим - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

Если , то получим - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

Итак, область абсолютной сходимости исходного функционального ряда - .

II способ.

Определим и заданного ряда: , .

По признаку Даламбера абсолютной сходимости функционального ряда можно записать:

.

Если , т.е. , то заданный функциональный ряд сходится абсолютно.

Исследуем на сходимость исходный функциональный ряд при и .

Если , то получим - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е.

Если , то получим - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .

Ответ: область абсолютной сходимости исходного функционального ряда - .

Пример №4 (№339 из, с комментариями преподавателя).

Найти область сходимости функционального ряда:

.

Решение

Найдем общий элемент заданного функционального ряда . Если , то ; Так как , то ряд расходится.

Страницы: 1 2 3 4 5 6 7 8 9 10

Образование, педагогика, воспитание:

Дидактические требования к разработке дидактических игр по информатике на основе применения ИТ
Современный урок – понятие многогранное. Это и логика изложения, и разнообразие дидактического материала, и организация работы учащихся, и постоянные поиски форм и методов преподавания, и техническое оснащение урока. Сегодня в традиционную схему «учитель – ученик – учебник» вошло новое звено – комп ...

Методика формирования морфологического строя речи
Ученые-методисты рекомендуют учителям проводить работу над закреплением грамматических моделей систематически, на каждом уроке и обязательно включать в домашние задания во всех классах. Изучение грамматических форм чаще всего выделяется, как самостоятельная часть урока, но в некоторых случаях может ...

Математика и ее потенциал в развитии младших школьников
Развитие – процесс, направленный на изменение материальных и духовных объектов с целью их усовершенствования. Изменение материи и сознания, их универсальное свойство, всеобщий принцип объяснения истории природы, общества и познания. В начальной школе именно математика является основой развития у уч ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru