Найдем общий элемент заданного функционального ряда:
Исследуемый функциональный ряд представляет собой сумму убывающей геометрической прогрессии при , т.е. при , где , .
Значит, область сходимости исходного функционального ряда: .
Проверим сходимость исходного функционального ряда при и .
Если , то получим - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .
Если , то получим - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .
Итак, область абсолютной сходимости исходного функционального ряда - .
II способ.
Определим и заданного ряда: , .
По признаку Даламбера абсолютной сходимости функционального ряда можно записать:
.
Если , т.е. , то заданный функциональный ряд сходится абсолютно.
Исследуем на сходимость исходный функциональный ряд при и .
Если , то получим - числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е.
Если , то получим - числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. .
Ответ: область абсолютной сходимости исходного функционального ряда - .
Пример №4 (№339 из, с комментариями преподавателя).
Найти область сходимости функционального ряда:
.
Решение
Найдем общий элемент заданного функционального ряда . Если , то ; Так как , то ряд расходится.
Образование, педагогика, воспитание:
Средства повышения двигательной активности
умственно отсталых учащихся
Физическое воспитание, применительно к системе специальных коррекционных школ, мы понимаем как учебно-педагогический процесс, направленный на обучение двигательным действиям, на управление развитием физических качеств и на коррекцию двигательных нарушения, имеющихся у учащихся этих школ. В фундамен ...
Национальные сказки, их значения для всеобщего развития ребенка
Этнопедагогика народа, создаваемая веками, включает в себя множество элементов, составляющих единую систему воспитания подрастающего поколения. Задача ставилась одна: вырастить человека, способного выжить в этом (часто враждебном) мире. И всё это - через участие в сложной системе религиозных (реже ...
Использование стихов детских поэтов на утренниках и праздниках
Детский праздник - важная часть жизни ребенка, это радостное событие, которое позволяет расслабиться, встряхнуться, забыться, а порой и просто отдохнуть от будней. И уже почти афоризмом стали слова: Без праздников не бывает детства! Праздники духовно обогащают ребенка, расширяют его знания об окруж ...