Найдем общий элемент заданного функционального ряда:
Исследуемый функциональный ряд представляет собой сумму убывающей геометрической прогрессии при , т.е. при
, где
,
.
Значит, область сходимости исходного функционального ряда: .
Проверим сходимость исходного функционального ряда при и
.
Если , то получим
- числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е.
.
Если , то получим
- числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е.
.
Итак, область абсолютной сходимости исходного функционального ряда - .
II способ.
Определим и
заданного ряда:
,
.
По признаку Даламбера абсолютной сходимости функционального ряда можно записать:
.
Если , т.е.
, то заданный функциональный ряд сходится абсолютно.
Исследуем на сходимость исходный функциональный ряд при и
.
Если , то получим
- числовой положительный ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е.
Если , то получим
- числовой знакочередующийся ряд. Он расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е.
.
Ответ: область абсолютной сходимости исходного функционального ряда - .
Пример №4 (№339 из, с комментариями преподавателя).
Найти область сходимости функционального ряда:
.
Решение
Найдем общий элемент заданного функционального ряда . Если
, то
; Так как
, то ряд расходится.
Образование, педагогика, воспитание:
Технология изображения пейзажа в зависимости от времени года
Каждое время года обладает в природе своей собственной игрой красок. Возьмем, например, синеву неба. Весной она кажется ясной и прохладной, в жаркие летние дни покрыта легкой дымкой, а ясными осенними днями сияет почти теплой голубизной. Для весенней листвы деревьев характерен свежий сияющий зелены ...
Характеристика программы развития общения со сверстниками у детей старшего
дошкольного возраста посредством игры
Анализ результатов констатирующего этапа эксперимента позволил разработать программу развития общения со сверстниками у детей старшего дошкольного возраста посредством игры. Целью развивающей программы является развитие общения старших дошкольников со сверстниками посредством игры. Цель программы п ...
Основные характеристики младшего школьного возраста
Младший школьный возраст — период жизни ребенка от 6-7 до 10 лет, когда он проходит обучение в начальных классах (I – IV классы) современной школе. Для этого возраста характерно, что в качестве ведущей у ребенка формируется учебная деятельность, в которой происходит усвоение человеческого опыта, пр ...