Пример№30 (№ 343 из [7], с комментариями преподавателя).
Можно ли к ряду
применить теорему о почленном дифференцировании рядов?
Решение
Известно, что почленное дифференцирование функционального ряда возможно, если члены ряда и их производные непрерывны, а сам ряд и ряд, составленный из производных, сходятся в данном промежутке равномерно.
Сравним исследуемый функциональный ряд с функциональным рядом
при любом фиксированном
.
Предварительно заметим, что функциональный ряд равномерно и абсолютно сходится при
R в соответствии с признаком Вейерштрасса.
Действительно, при R справедливо неравенство
. А положительный числовой ряд
является сходящимся. Это ряд Дирихле (или обобщенный гармонический ряд с
).
Обозначим общие элементы сравниваемых рядов
Так как при
и
- бесконечно малые величины, то
. В соответствии со вторым признаком сравнения рядов, так как существует конечный, отличный от нуля предел
, то оба ряда
и
одновременно сходятся или одновременно расходятся.
Но ряд абсолютно и равномерно сходится для
R, значит, функциональный ряд
сходится равномерно и абсолютно при
. Кроме того, члены ряда - непрерывные функции при
R.
Найдем производную общего элемента функционального ряда
:
.
Ряд, составленный из производных членов исходного функционального ряда, имеет вид:
.
Все элементы записанного ряда представляют собой непрерывные функции на R.
Докажем, что ряд равномерно и абсолютно сходится на R.
Очевидно, что для R выполняется следующие неравенства:
. Но числовой положительный ряд
сходится, так как является обобщенным гармоническим рядом (ряд Дирихле) с
. В соответствии с признаком Вейерштрасса, будет равномерно и аболютно сходиться ряд
при
R. А это ряд, составленный из производных чледов исследуемого функционального ряда.
Образование, педагогика, воспитание:
Метод проектов и его характеристика
В процессе «обучения – учения» происходит постоянное взаимодействие учителя и ученика. Учение, имеющее ярко выраженную личностную окраску, каждым из учащихся осуществляется по-разному: один не может продемонстрировать усвоение знаний, другой на основе ранее полученного опыта, наоборот, показывает ф ...
Типы педагогических задач и их характеристика
По временному признаку принято различать три большие группы педагогических задач - стратегические, тактические и оперативные. Стратегические задачи - это своеобразные "сверхзадачи". Они определяют исходные цели и конечные результаты педагогической деятельности. В реальном педагогическом п ...
Понятие умственной отсталости, причины недостатков интеллектуального
развития
Термином «умственная отсталость» обозначается стойко выраженное снижение познавательной деятельности ребенка, возникшее на основе органического поражения ЦНС. Умственная отсталость (УО) - это форма патологического развития личности в целом. В определении УО учитывается три критерия: психологический ...