Значит, к ряду
можно применить теорему о почленном дифференцировании.
Ответ: Теорему о почленом дифференцировании применить можно.
Пример №31 (№108 из [10], студент самостоятельно)
Убедиться, что ряд
можно дифференцировать почленно.
Решение
Члены функционального ряда
являются непрерывно дифференцируемыми функциями при
R.
Очевидно неравенство
при
R,
N.
Сравним функциональный и числовой ряды
и
.
При
R,
N справедливо неравенство
.
Числовой положительный ряд
является сходящимся рядом, так как представляет собой ряд Дирихле с
.
Значит, по признаку Вейерштрасса, функциональный ряд
сходится равномерно и абсолютно при
R.
Найдем производную общего элемента заданного функционального ряда:
при
R.
Составим функциональный ряд из производных членов функционального ряда
:
.
Члены этого функционального ряда являются непрерывными функциями при
R.
Кроме того, функциональный ряд
абсолютно и равномерно сходится при
R в соответствии с признаком Вейерштрасса. Действительно, так как
a)
для
R,
N;
б)
при
R;
в)
числовой положительный сходящийся ряд (ряд Дирихле с
).
Значит, к заданному функциональному ряду
можно применить теорему о почленном дифференцировании.
Ответ: Можно почленно дифференцировать заданный функциональный ряд.
Преподаватель: А теперь рассмотрим задания на возможность интегрируемости ряда.
Пример №32 (№344 из [7], с комментариями преподавателя).
Законно ли применение к ряду
теоремы об интегрировании функциональных рядов в промежутках
?
Решение
Для того, чтобы функциональный ряд можно было почленно проинтегрировать на отрезке, необходимым является непрерывность его членов и равномерная сходимость ряда на этом промежутке.
Образование, педагогика, воспитание:
Познавательная активность учащихся, как педагогическая категория
Познание изучается рядом научных дисциплин. Эталоны и нормы познания, их соответствие познаваемой реальности, достоверность и недостоверность познания, взаимоотношение познания и иных форм отношения человека к миру (религии, морали, искусства) изучаются в специальном разделе философии – теории позн ...
Технологии преподавания происхождения сущности государства и права в современной
школе
Динамичность общественной жизни диктует потребность в изменениях даже, казалось бы, универсальных форм обучения. Например, с течением определенного времени специалисты, анализирующие опыт преподавания происхождения сущности права и государства в современной школе, пришли к выводу о недопустимости о ...
Художественная литература как средство воспитания чувства юмора
Если произведение адресовано ребенку, у которого все особенное: восприятие, чувства, память, речь, круг знаний и интересов, объем опыта, то литература должна быть соответствующей: интересной, динамичной и, конечно же, нравственной. Книга, обращенная к детям, должна учитывать их интересы, пристрасти ...