Значит, к ряду можно применить теорему о почленном дифференцировании.
Ответ: Теорему о почленом дифференцировании применить можно.
Пример №31 (№108 из [10], студент самостоятельно)
Убедиться, что ряд можно дифференцировать почленно.
Решение
Члены функционального ряда являются непрерывно дифференцируемыми функциями при R.
Очевидно неравенство при R, N.
Сравним функциональный и числовой ряды и .
При R, N справедливо неравенство .
Числовой положительный ряд является сходящимся рядом, так как представляет собой ряд Дирихле с .
Значит, по признаку Вейерштрасса, функциональный ряд сходится равномерно и абсолютно при R.
Найдем производную общего элемента заданного функционального ряда: при R.
Составим функциональный ряд из производных членов функционального ряда :
.
Члены этого функционального ряда являются непрерывными функциями при R.
Кроме того, функциональный ряд абсолютно и равномерно сходится при R в соответствии с признаком Вейерштрасса. Действительно, так как
a) для R, N;
б) при R;
в) числовой положительный сходящийся ряд (ряд Дирихле с ).
Значит, к заданному функциональному ряду можно применить теорему о почленном дифференцировании.
Ответ: Можно почленно дифференцировать заданный функциональный ряд.
Преподаватель: А теперь рассмотрим задания на возможность интегрируемости ряда.
Пример №32 (№344 из [7], с комментариями преподавателя).
Законно ли применение к ряду
теоремы об интегрировании функциональных рядов в промежутках ?
Решение
Для того, чтобы функциональный ряд можно было почленно проинтегрировать на отрезке, необходимым является непрерывность его членов и равномерная сходимость ряда на этом промежутке.
Образование, педагогика, воспитание:
Определение дидактики. Задачи и основы дидактики
В современном, полном контрастов и противоречий мире происходят значительные изменения и преобразования, которые отражаются на всех сферах человеческой жизни. Цивилизация стоит перед выбором направленности своего дальнейшего пути развития в условиях многочисленных катастроф и катаклизмов как природ ...
Инновационные процессы в России в конце 20 – начале
21 вв
Современные инновационные процессы в российском образовании обусловлены противоречиями, обострившимися на рубеже 70–80-х годов ХХ в., когда в отечественной школе с очевидностью стали проявляться признаки кризиса и застоя. Эти признаки обнаруживались в спаде интересов школьников к учебе, в упадке шк ...
Реализация условий использования эвристической
технологии в образовательном процессе
Рассмотрим некоторые виды уроков, которые можно провести в качестве эвристических. Творческие лаборатории Структура уроков при эвристическом обучении предполагает организацию творческой, поисковой математической деятельности учащихся с различным уровнем учебных и математических способностей. Диффер ...