Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 28

Действительно, так как:

а) для R, N;

б) для R;

в) - числовой положительный сходящийся ряд. По признаку Даламбера , 0<1.

Значит, теорему о почленном интегрировании к функциональному ряду на отрезке применить можно.

Ответ: Можно почленно проинтегрировать функциональный ряд .

Пример №37 (№106 из [10]).

Дифференцируя прогрессию получить новые разложения. Решение

Ряд сходится на интервале , как сумма убывающей геометрической прогрессии. Производная общего члена заданного функционального ряда примет вид: . Составим ряд из производных:

.

Исследуем полученный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

если , т.е. , то ряд сходится абсолютно.

Ответ: При дифференцировании заданной прогрессии получен ряд .

Пример №38 (№109 из [10]).

Убедиться, что ряд можно продифференцировать почленно.

Решение

Исследуем заданный функциональный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

Так как , то ряд сходится абсолютно при R. Тогда остаток ряда можно оценить с помощью неравенства , т.е.

.

Так как неравенства и равносильны, то, взяв , где - какое-нибудь целое положительное число, удовлетворяющее условию , приходим к неравенству . Итак, заданный функциональный ряд сходится абсолютно и равномерно при R. Члены ряда являются непрерывными функциями при R.

Производная общего члена заданного функционального ряда примет вид:

.

Страницы: 23 24 25 26 27 28 29 30 31 32

Образование, педагогика, воспитание:

Цель и задачи констатирующего эксперимента. Характеристика детей, участвующих в экспериментальном исследовании
Целью констатирующего эксперимента явилось выявление нарушений формирования фонетико-фонетических процессов у дошкольников старшего возраста с фонетико-фонематическим недоразвитием речи. Для достижения поставленной цели мы поставили перед собой следующие задачи: 1. Подобрать методические рекомендац ...

Национальные традиции и культура как область воспитательных воздействий в ДОУ
В современных условиях осознания духовных основ развития общества актуальной является проблема глубокого и научно-обоснованного учета особенностей региональной культуры в работе с детьми. Необходимость внедрения регионального компонента предусмотрена Законом РФ. В содержании отдельных разделов дошк ...

Методические рекомендации к проведению пальчиковых игр
1) Перед игрой с ребенком обсудить ее содержание, сразу при этом отрабатывая необходимые жесты, комбинация пальцев, движения. Это не только позволит подготовит малыша к правильному выполнению упражнения, но и создаст необходимый эмоциональный настрой. 2) Перед началом упражнений дети разогревают ла ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru