Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 28

Действительно, так как:

а) для R, N;

б) для R;

в) - числовой положительный сходящийся ряд. По признаку Даламбера , 0<1.

Значит, теорему о почленном интегрировании к функциональному ряду на отрезке применить можно.

Ответ: Можно почленно проинтегрировать функциональный ряд .

Пример №37 (№106 из [10]).

Дифференцируя прогрессию получить новые разложения. Решение

Ряд сходится на интервале , как сумма убывающей геометрической прогрессии. Производная общего члена заданного функционального ряда примет вид: . Составим ряд из производных:

.

Исследуем полученный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

если , т.е. , то ряд сходится абсолютно.

Ответ: При дифференцировании заданной прогрессии получен ряд .

Пример №38 (№109 из [10]).

Убедиться, что ряд можно продифференцировать почленно.

Решение

Исследуем заданный функциональный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

Так как , то ряд сходится абсолютно при R. Тогда остаток ряда можно оценить с помощью неравенства , т.е.

.

Так как неравенства и равносильны, то, взяв , где - какое-нибудь целое положительное число, удовлетворяющее условию , приходим к неравенству . Итак, заданный функциональный ряд сходится абсолютно и равномерно при R. Члены ряда являются непрерывными функциями при R.

Производная общего члена заданного функционального ряда примет вид:

.

Страницы: 23 24 25 26 27 28 29 30 31 32

Образование, педагогика, воспитание:

Формирование знаний на уроке окружающего мира с использованием презентации на тему: «Животный и растительный мир болот»
По программе «Начальная школа XIX век» встречается тема «Животный и растительный мир болот». Целью урока: расширить представления учащихся о животном и растительном мире водоемов: болот. Развивающая: развивать ОУУН: учебно–управленческие умения: организовывать свой труд, контроль и анализ собственн ...

История введения инноватики в образование
Понятие «инноватика» появилось более 100 лет назад в культурологии и лингвистике при описании процессов культурной диффузии, когда феномен из одного культурного ареала проникал в другие. Первое наиболее полное описание инновационных процессов было представлено в начале XX в. экономистом И. Шумпетер ...

Роль и место самостоятельного домашнего чтения в обучении учащихся старших классов иностранному языку
Чтение на иностранном языке как опосредованная форма общения предоставляет возможности для расширения кругозора учащихся за счёт познавательной информации, заложенной в текстах, для воздействия на их интересы, чувства и эмоции. Как справедливо отмечает Л.А. Чернявская, оно оказывает влияние на разв ...

Навигация по сайту

© 2025 Copyright www.ecsir.ru