Действительно, так как:
а)
для
R,
N;
б)
для
R;
в)
- числовой положительный сходящийся ряд. По признаку Даламбера
, 0<1.
Значит, теорему о почленном интегрировании к функциональному ряду
на отрезке
применить можно.
Ответ: Можно почленно проинтегрировать функциональный ряд
.
Пример №37 (№106 из [10]).
Дифференцируя прогрессию
получить новые разложения. Решение
Ряд
сходится на интервале
, как сумма убывающей геометрической прогрессии. Производная общего члена заданного функционального ряда примет вид:
. Составим ряд из производных:
.
Исследуем полученный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:
,
если
, т.е.
, то ряд
сходится абсолютно.
Ответ: При дифференцировании заданной прогрессии получен ряд
.
Пример №38 (№109 из [10]).
Убедиться, что ряд
можно продифференцировать почленно.
Решение
Исследуем заданный функциональный ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:
,
Так как
, то ряд
сходится абсолютно при
R. Тогда остаток ряда можно оценить с помощью неравенства
, т.е.
.
Так как неравенства
и
равносильны, то, взяв
, где
- какое-нибудь целое положительное число, удовлетворяющее условию
, приходим к неравенству
. Итак, заданный функциональный ряд сходится абсолютно и равномерно при
R. Члены ряда являются непрерывными функциями при
R.
Производная общего члена заданного функционального ряда примет вид:
.
Образование, педагогика, воспитание:
Цели и формы музыкального образования в европейской истории образования
Музыкальное образование — процесс и результат усвоения систематизированных знаний, умений и навыков, необходимых для музыкальной деятельности. Под музыкальным образованием понимают также систему организации музыкального обучения в музыкальных учебных заведениях. Важную роль может играть и самообраз ...
Методические рекомендации по проведению лекционных занятий
Курс "Математический анализ" входит в блок дисциплин предметной подготовки и занимает важное место среди них в процессе подготовки будущих педагогов - математиков. Целью курса является научное обоснование тех, относящихся к нему понятий, первое представление о которых дается в школе. Курс ...
Формы и методы дидактической игры
В современной дидактике существуют различные подходы и варианты классификаций методов обучения. Одной из таких классификаций является распространенная классификация методов обучения по источнику получения знаний (словесные, наглядные и практические методы). Различают общую и частную дидактики. Обща ...