применить теорему о дифференцировании функциональных рядов?
Решение
Функциональный ряд можно почленно продифференцировать, если члены ряда и производные его членов непрерывны, а сам ряд и ряд, составленный из производных членов его ряда, сходятся равномерно на данном промежутке.
Рассмотрим заданный функциональный ряд :
a) члены ряда являются непрерывными функциями для R,
N;
б) так как при
R,
N, то справедливо неравенство
при
R,
N;
в) но - числовой положительный сходящийся ряд (ряд Дирихле с
);
г) значит, функциональный ряд сходится равномерно и абсолютно при
R по признаку Вейерштрасса.
Составим ряд из производных членов заданного функционального ряда
.
Исследуем полученный функциональный ряд:
a) члены ряда являются непрерывными функциями для R,
N;
б) так как при
R,
N, то справедливо неравенство
при
R,
N;
в) но - числовой положительный сходящийся ряд (ряд Дирихле с
);
г) значит, функциональный ряд сходится равномерно и абсолютно при
R по признаку Вейерштрасса.
Следовательно, заданный функциональный ряд можно почленно дифференцировать.
Ответ: Теорему о почленном дифференцировании применить можно.
Пример №36 (№96 из [10]).
Можно ли к ряду применить теорему об интегрировании функциональных рядов в любом конечном промежутке
?
Решение
Функциональный ряд можно почленно интегрировать на отрезке
, если на указанном промежутке его члены непрерывны, и ряд равномерно сходится.
Элементы функционального ряда являются непрерывными функциями для
R.
Кроме того, по признаку Вейерштрасса заданный функциональный ряд равномерно и абсолютно сходится на R, а, значит, и на отрезке .
Образование, педагогика, воспитание:
Принципы образования в области прав человека
Устойчивая (в долгосрочном плане), всеобъемлющая и эффективная национальная стратегия включения образования в области прав человека в образовательные системы может включать следующие мероприятия: – учет вопросов образования в области прав человека в национальном законодательстве, регулирующем школь ...
Психолого-педагогическая характеристика детей младшего
школьного возраста с нарушением интеллекта
Границы младшего школьного возраста, совпадающие с периодом обучения в начальной школе, устанавливаются в настоящее время с 6-7 до 9-10 лет. В этот период происходит дальнейшее физическое и психофизиологическое развитие ребенка, обеспечивающее возможность систематического обучения в школе. Начало о ...
Проведение исследовательского эксперимента
На примере приведенной выше работы над проектом, был проведен исследовательский эксперимент в одном из 3-их классов гимназии №9 города Красноярска. В организованной работе над проектом участвовало 17 человек. В данном учебном заведении программой предусмотрено изучение информатики в начальной школе ...