применить теорему о дифференцировании функциональных рядов?
Решение
Функциональный ряд можно почленно продифференцировать, если члены ряда и производные его членов непрерывны, а сам ряд и ряд, составленный из производных членов его ряда, сходятся равномерно на данном промежутке.
Рассмотрим заданный функциональный ряд :
a) члены ряда являются непрерывными функциями для R,
N;
б) так как при
R,
N, то справедливо неравенство
при
R,
N;
в) но - числовой положительный сходящийся ряд (ряд Дирихле с
);
г) значит, функциональный ряд сходится равномерно и абсолютно при
R по признаку Вейерштрасса.
Составим ряд из производных членов заданного функционального ряда
.
Исследуем полученный функциональный ряд:
a) члены ряда являются непрерывными функциями для R,
N;
б) так как при
R,
N, то справедливо неравенство
при
R,
N;
в) но - числовой положительный сходящийся ряд (ряд Дирихле с
);
г) значит, функциональный ряд сходится равномерно и абсолютно при
R по признаку Вейерштрасса.
Следовательно, заданный функциональный ряд можно почленно дифференцировать.
Ответ: Теорему о почленном дифференцировании применить можно.
Пример №36 (№96 из [10]).
Можно ли к ряду применить теорему об интегрировании функциональных рядов в любом конечном промежутке
?
Решение
Функциональный ряд можно почленно интегрировать на отрезке
, если на указанном промежутке его члены непрерывны, и ряд равномерно сходится.
Элементы функционального ряда являются непрерывными функциями для
R.
Кроме того, по признаку Вейерштрасса заданный функциональный ряд равномерно и абсолютно сходится на R, а, значит, и на отрезке .
Образование, педагогика, воспитание:
Критерий Коши равномерной сходимости функционального ряда
Теорема 2. Для того чтобы функциональный ряд равномерно сходился на множестве X, необходимо и достаточно, чтобы 0, N, , , N и выполнялось неравенство: . Доказательство 1) Составим разность частичных сумм функционального ряда : . 2) Если будут выполняться неравенства: , то это означает, что последов ...
Психолого-педагогическое обоснование использования
наглядного метода обучения
Наглядность – это свойство, выражающее степень доступности и понятности психических образов объектов познания для познающего субъекта. В процессе создания образа восприятия объекта наряду с ощущением участвуют память и мышление. Образ воспринимаемого объекта является наглядным только тогда, когда ч ...
Понятие грамматического строя языка
В начале нашего исследования необходимо уточнить терминологический аппарат, который будет использоваться в курсовой работе. Тема исследования звучит, как «Развитие грамматического строя учащихся на уроках русского языка», из чего понятно, что основным понятием будет являться собственно грамматическ ...